Name: Enrolment No:		TMUT	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Remedial Mathematics Semester : I Program: Int. BMSC Microbiology/N \&D/Clinical Research, BT Biomedical/Biotechnical, B.Sc. FND/Microbiology/Clinical Research Course Code: BP106RMT Instructions: All questions are compulsory			
S. No.	Section A Short answer questions/ MCQ/T\&F $\text { (20Qx1.5M= } 30 \text { Marks) }$	Marks	COs
Q 1	If $A=\left[\begin{array}{cc}2 & 4 \\ a & -5 \\ 3 & d\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & b \\ 1 & -c \\ 3 & 2\end{array}\right]$ are equal, then the value of a, b, c, d is: a. $\quad a=1, b=4, c=5, d=2$ b. $\quad a=1, b=4, c=-5, d=2$ c. $a=1, b=4, c=5, d=-2$ d. $a=-1, b=4, c=5, d=2$	1.5	CO1
Q2.	A matrix contains 48 elements then which of the following cannot be the number of rows: a. 16 b. 18 c. 8 d. 24	1.5	CO1
Q3.	Find the cofactor of 3 in the matrix $A=\left(\begin{array}{ccc}2 & 5 & -6 \\ 4 & 3 & 0 \\ 1 & 0 & -2\end{array}\right)$	1.5	CO1
Q4.	For matrices $A=\left(\begin{array}{cc}2 & -3 \\ 0 & 2 \\ 7 & -2\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & -2 & 0 \\ 5 & 1 & 2\end{array}\right)$, which of the following is the matrix $3\left(A^{T}+2 B\right)$? a. $\left(\begin{array}{ccc}12 & 12 & 21 \\ 21 & -12 & -6\end{array}\right)$ b. $\left(\begin{array}{cc}4 & 7 \\ -4 & 4 \\ 7 & 2\end{array}\right)$	1.5	CO1

	c. $\left(\begin{array}{ccc}12 & -12 & 21 \\ 21 & 12 & 6\end{array}\right)$ d. The matrix is undefined		
Q5.	The value of resultant matrix multiplication $\left(\begin{array}{lll}7 & 5 & 3\end{array}\right)\left(\begin{array}{l}7 \\ 3 \\ 2\end{array}\right)$ is: a. 70 b. 49 c. 15 d. 6	1.5	CO1
Q6.	Two lines $3 x-y+4=0$ and $a x+2 y-3=0$ are parallel, then a is equal to: a. -3 b. -6 c. -0.5 d. 3	1.5	CO2
Q7.	Which point is on the line $3 x-5 y-9=0$ a. $(-4,-1)$ b. $(1,-2)$ c. $(-3,-2)$ d. $(-2,-3)$	1.5	CO2
Q8.	Which line is parallel to the line $x-6=0$? a. $x=-2$ b. $y=5$ c. $y=2 x+3$ d. $y-1=0$	1.5	CO2
Q9.	What is the y intercept of the line $5 x-3 y+30=0$?	1.5	CO2
Q10.	What is the slope of the line $-5 x+8 y-2=0$?	1.5	CO2
Q11.	If $f(x)=\operatorname{loge} e^{\tan x}$ then $f^{\prime}(x)=$?	1.5	CO3
Q12.	Second derivative of $\cos x$ is given by: a. $-\sin x$ b. $\sin x$ c. $\cos x$ d. $-\cos x$	1.5	CO3
Q13.	If $x=\sin \theta, y=\cos \theta$, then $\frac{d y}{d x}=$?	1.5	CO3
Q14.	Evaluate $I=\int\left(x^{2}+\frac{2}{x^{3}}-7\right) d x$	1.5	CO3
Q15.	$\int 4^{x} d x=?$ a. $4^{x} \log 4+c$ b. $\frac{4^{x}}{\log 4}+c$ c. $\frac{4^{x+1}}{x+1}+c$ d. none	1.5	CO3
Q16.	Laplace transform of t. sinat is given by:	1.5	CO3

| | a. $\frac{2 s}{\left(s^{2}-a^{2}\right)}$
 b. $\frac{2 s}{\left(s^{2}+a^{2}\right)}$
 c. $\frac{2 a s}{\left(s^{2}+a^{2}\right)}$
 d. $\frac{2}{\left(s^{2}+a^{2}\right)}$ | | |
| :--- | :--- | :--- | :--- | :--- |

	In a culture, bacteria increase at the rate proportional to the number of bacteria present. If there are 200 bacteria initially and are doubled in 4 hours, find the number of bacteria present 9 hours later. $\left(2^{\frac{9}{4}}=4.76\right)$		
Q 2	Evaluate the integral I using the method of partial fractions $I=\int \frac{3 x-2}{(x-1)^{2}(x+3)} d x$	15	CO 3
	$\begin{gathered} \text { Section D } \\ \text { (2Qx10M=20 Marks) } \end{gathered}$		
Q 1	Find the ratio in which the line $3 x+y-9=0$ divides the line segment joining $A(1,3)$ and $B(2,7)$.	10	CO2
Q 2	Without expanding the determinant show that $\left\|\begin{array}{lll} b+c & b c & b^{2} c^{2} \\ c+a & c a & c^{2} a^{2} \\ a+b & a b & a^{2} b^{2} \end{array}\right\|=0$ OR Determine whether the matrix A is invertible or not. If it is invertible then apply adjoint method to find the inverse of matrix A : $\mathrm{A}=\left[\begin{array}{ccc} 2 & 6 & 3 \\ 4 & -1 & 3 \\ 1 & 3 & 2 \end{array}\right]$	10	CO1

