

Q 11.	Following expression represents the wave motion (a) $E=E_{0} \sin w t$ (b) $\mathrm{E}=\mathrm{E}_{0} \sin (\mathrm{wt}-\mathrm{kx})$ (c) $\mathrm{E}=\mathrm{E}_{0} \cos \mathrm{kx}$ (d) $\mathrm{E}=\mathrm{E}_{0} \sin \cos \mathrm{wt}$	1.5	CO3
Q 12.	The work done in displacing a charge 2C through 0.5 m on an equipotential surface is (a) zero (b) 4 J (c) 1 J (d) none of these	1.5	CO 3
Q 13.	In EM wave (a) electrons produce magnetic field only (b) electron produce electric field only (c) time variation of electric field produces magnetic field and vice-versa (d) time variation of electric field guides the wave	1.5	CO 3
Q 14.	The group velocity of matter waves is (a) equal to the particle velocity (b) greater than the particle velocity (c) less than the particle velocity (d) same as phase velocity	1.5	CO4
Q 15.	Quantum theory successfully explains the phenomena of (a) photoelectric and compton effects (b) interference, diffraction and polarisation (c) black body radiations (d) all of these	1.5	CO4
Q 16.	Matter waves (a) show diffraction (b) show interference (c) polarisation (d) none of these	1.5	CO4
Q 17.	Heisenberg uncertainty relation holds good for (a) microscopic as well as macroscopic particles both (b) only microscopic particles (c) only macroscopic particles (d) none of these	1.5	CO4
Q 18.	The momentum of a particle in infinite potential well is (a) proportional to n (b) inversely proportional to n^{2} (c) proportional to n^{2} (d) inversely proportional to n	1.5	CO4
Q 19.	The entire information of a quantum system can be gathered with the help of (a) position (b) eigen value (c) momentum operator (d) wave function	1.5	CO4
Q 20.	A "QUBIT" can be Implemented by [choose all that apply] a) Photonisation of photon b) polarization of photon c) The energy level of the neutron d) The Energy level of an atom	1.5	CO5
	SECTION B $(4 Q \times 5 M=20$ Marks $)$ All questions are compulsory. Each Question carries 5 Marks Write very Short Answers/ Solve		
Q 21.	Show that the wavelength λ associated with a particle of mass m and kinetic energy E is given by; $\lambda=\frac{h}{\sqrt{2 m E}} \quad \text { where } \mathrm{h}=\text { Planck's constant }$	5	CO4

Q 22.	Outline Maxwell's equations in differential and integral forms for time dependent fields.	5	CO2
Q 23.	Explain Ampere's Circuital law with proper diagram.	5	CO 3
Q 24.	The Optical power of 0.5 mW is initially launched into an optical fiber. The power level is found to be 0.0199 mW after 4 km . Calculate the attenuation coefficient.	5	CO1
$\begin{gathered} \text { SECTION C } \\ (2 Q \times 15 M=30 \mathrm{Marks}) \end{gathered}$ - All questions are compulsory, Q 26. has an internal choice, Each Question carries $\mathbf{1 5}$ Marks - Write long answer/ Derive/ Solve			
Q 25.	(a)Define Electric potential and write the relation between electric potential and electric field intensity. Show that the Electrostatic field is a conservative field. (b) A region is specified by a potential function given by: $\phi=4 x^{2}+3 y^{2}-9 z^{2}$ Calculate electric field strength at a point $(3,4,5)$ in this region.	15	CO2
Q 26.	(a) Derive time independent Schrodinger wave equation. (b) Calculate the lowest energy of an electron confined in a 1-D cubical box of each side $2 \AA$. OR (a) Explain Einstein's equation for photoelectric effect with proper explanation. (b) A metallic surface, when illuminated with light of wavelength λ_{1}, emits electrons with energies upto a maximum value E_{1}, and when illuminated with light of wavelength λ_{2}, where $\lambda_{2}<\lambda_{1}$, it emits electrons with energies upto a maximum value E_{2}. Prove that Planck's constant h and the work function φ of the metal are given by $\begin{equation*} h=\frac{\left(E_{2}-E_{1}\right) \lambda_{1} \lambda_{2}}{C\left(\lambda_{1}-\lambda_{2}\right)} \text { and } \varphi=\frac{E_{2} \lambda_{2}-E_{1} \lambda_{1}}{\left(\lambda_{1}-\lambda_{2}\right)} \tag{10} \end{equation*}$	15	CO4
$\begin{gathered} \text { SECTION-D } \\ (2 Q \times 10 \mathrm{M}=20 \text { Marks }) \end{gathered}$ - All questions are compulsory, Q.No. 28 has an internal choice, Each Question carries 10 Marks - Write long answer/ Derive/ Solve			
Q 27.	(a) Mention any four differences between a classical computer and quantum computer. Given $\|\psi\rangle=6\|0\rangle-5 i\|1\rangle$. Find its normalized state.	10	CO5
Q 28.	Describe the construction and working of a $\mathrm{He}-\mathrm{Ne}$ laser system with proper diagram and labelling the components used. OR Discuss different types of optical fiber with the refractive index profiles. (10)	10	CO1

Constant	Standard Values
Planck's Constant (h)	$6.63 \times 10^{-34} \mathrm{Joule}-\mathrm{sec}$
Permittivity of free space $\left(\varepsilon_{0}\right)$	$8.85 \times 10^{-12} \mathrm{Farad} / \mathrm{meter}$
Velocity of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
Boltzmann constant $\left(k_{B}\right)$	$1.38 \times 10^{-23} \mathrm{JK} \mathrm{K}^{-1}$
Rest mass of an Electron $\left(m_{o}\right)$	$9.11 \times 10^{-31} \mathrm{~kg}$
Mass of the proton $\left(m_{p}\right)$	$1.67 \times 10^{-27} \mathrm{~kg}$
Charge of an electron (e)	$1.6 \times 10^{-19} \mathrm{C}$

