Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Design of Steel Structure Semester: VII
Program: B.Tech. Civil Engineering Time: 03 hrs.
Course Code: CIVL 4034 Max. Marks: 100

Instructions: IS 800 & IS 808 should be allowed/Provided

SECTION A S. No. Marks \mathbf{CO} Q 1 Write all the types of groove weld you know with neat sketches. Α CO₁ Name the different modes of failure of a bolted joint? В CO₁ \mathbf{C} Classify the compression members according to the slenderness $5 \times 4 = 20$ CO₂ CO₄ Sketch five various types of roof truss. D CO₃ Е Why does buckling of web occur in beams? **SECTION B** Q 2 An ISLC 300 @ 324.7 N/m is to carry a factored tensile force of 900 kN. The channel section is to be welded at the site to a gusset plate 10 mm 10 CO₁ thick. Design the fillet weld if the overlap is limited to 350mm. Q 3 Two plates each of 200 x 8mm are to be joined using 20mm diameter 4.6 grade bolts to form a lap joint. The joint is supposed to transfer a facored 10 CO₁ load of 280 kN. Design the joint and suitable pitch for the bolts. Design a single angle discontinuous strut to carry a load of 47 kN. The O 4 length of the strut is 3m between intersections. The strut is connected to 10 CO₂ 12 mm thick gusset plate with 24mm dia HSFG bolts. Q 5 The main tie of a roof truss consists of ISA 150 x 115 x 8mm and is connected to a gusset plate by 18 mm diameter bolts. Find out the 10 CO₂ maximum tensile load it can carry. **SECTION-C** Design a beam 11 m in clear span and subjected to a system of loads as Q 6 20 CO₃ shown in figure. Yield strength may be assumed as 250 MPa.

	190 kN 190 kN — 2 kN/m		
	OR Design a lintel over an opening of 4m. the lintel is made a wall 300mm thick. The lintel has to support a uniform load of 60 kN in addition to masonry. The weight of the masonry may be assumed to 20 kN/m³ and the height of brickwork above the lintel is 3m.		
Q 7	Design angle section purlins for a truss roof system to support sheeting weighing 135 N.m ² . The trusses are spaced 4 m c/c and the purlins are provided 2 m c/c. The building is situated in an area where the wind pressure is 1500 N/m ² . Use steel with yield stress 260 N/mm ² . Yield strength may be assumed as 250 MPa.	20	CO4