Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: VII

: 3 hr

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Program Name: B.Tech-Mechatronics

: Design Analysis of Algorithm **Course Name**

: MECH 3014P **Course Code**

Instructions: Attempt all questions. Section B and C has one choice.

SECTION A (**5Qx4M=20Marks**)

	(
S. No.		Marks	СО
Q1.	List out all cases of Master Theorem.	4 Marks	CO1
Q2.	Solve recurrence relation $T(n)=2T(n/4)+\sqrt{n}$	4 Marks	CO2
Q3.	Solve recurrence relation T (n)= $3T(n/2) + 2n^2$	4 Marks	CO3
Q4.	Explain in brief the basic asymptotic efficiency classes.	4 Marks	CO3
Q5.	Explain the concepts of P, NP and NP complete problems.	4 Marks	CO5
	SECTION B		
	(4Qx10M=40 Marks)		
Q6.	Describe steps for Prim's algorithm with suitable example.	10 Marks	CO1
Q7.	Differentiate performance measurement and performance estimation of algorithms.	10 Marks	CO2
Q8.	Devise a divide-and-conquer algorithm for finding the position of the largest element in an array of n numbers.	10 Marks	CO3
Q9.	Illustrate an algorithm which appends (concatenates) a linear list to another linear list. Find time complexity.	10 Marks	CO5
	OR		
	Describe Hamiltonian Paths in directed graph with example.	10 Marks	CO4
	SECTION-C		
	(2Qx20M=40 Marks)		
Q10.	Suppose you are given the array $A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$, and you then perform the binary search algorithm find the number 8. Which numbers in the array A are compared against the number 8?	20 Marks	CO2
Q11.	Solve the following Knapsack problem using greedy approach, where Knapsack capacity W=16	20 Marks	CO4

T.	****	X7.1	1		
Item	Weight	Value			
1	10	100			
2	7	63			
3	8	56			
4	4	12			
Given as					
Function	ORD_FINE				
the word	l form. If t	20 Marks	CO3		
ORD_W	ORDS is ret				
recurrence	e relation an				