Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: VII

: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program Name: B.TECH-Mechanical Engineering

Course Name : Modeling and Simulation

Course Code : MECH4006P

Nos. of page(s) : 02

Instructions: Attempt All Questions. One question from section B and C have an internal Choice. Assume any Missing Data if required.

SECTION A (5Qx4M=20Marks)				
Q1	Comprehend the implications of the system concept.	4	CO1	
Q2	State advantages and disadvantages of simulation approach.	4	CO2	
Q3	Elaborate usage of lumped approximation in complex thermal engineering problems.	4	CO3	
Q4	Determine whether the following matrix is positive or negative definite: $[A] = \begin{bmatrix} 4 & -3 & 0 \\ -3 & 0 & 4 \\ 0 & 4 & 2 \end{bmatrix}$	4	CO4	
Q5	Analyze Kuhn-tucker condition in optimization of multivariable problem having inequality constraints.	4	CO5	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q6	Discuss following Simulations Continuous Combined Discrete-Continues Monte Carlo Spreadsheet 	10	CO3	
Q7	Water from a purification plant is to be stored in a tank that is located at a height of 100 m and supplies the water needed by a chemical factory. Develop different conceptual designs for achieving this task and choose the most suitable one, justifying your choice. The average consumption of water by the factory may be taken as 1000 gallons/h ($3.785 \text{ m}^3/\text{h}$).	10	CO4	
Q8	In a heat transfer experiment, the heat flux q is measured at four value of the flow velocity, which is related to the fluid flow rate. The velocity V was measured as 0, 1, 2, 3, and 4 m/s and the corresponding heat flux as 1, 2, 9, 29, and 65 W/m ² . It is desired to fit a polynomial to these points	10	CO4	

	so that q may be expressed as $q=f(V)$. What is the highest-order		
	polynomial that may be obtained from these data? Also determine a		
	linear best fit to the given data.		
Q9	The profit per acre of a farm is given by		
	$20x_1 + 26x_2 + 4x_1x_2 - 4x_1^2 - 3x_2^2$		
	Where x_1 and x_2 denote, respectively, the labor cost and the fertilizer		
	cost. Find the values of x_1 and x_2 to maximize the profit.		
	OR		
	The volume of sales (f) of a product is found to be a function of the	[5+5]	CO5
	number of newspaper advertisements (x) and the number of minutes of		000
	television time (y) as		
	$f = 12xy - x^2 - 3y^2$		
	Each newspaper advertisement or each minute on television costs		
	\$1000. How should the firm allocate \$48,000 between the two		
	advertising media for maximizing its sales?		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q10	A rectangular beam is to be cut from a circular log of radius r. Find the		
	cross-sectional dimensions of the beam to (a) maximize the cross-	20	CO4
	sectional area of the beam, and (b) maximize the perimeter of the beam	20	004
	section.		
Q11	Create a simulation methodology for inventory control of any		
	industry/plant.		
	OR		
		30	GO5
	Create a simulation methodology for single server Queueing System.	20	CO5
	(Note- please mention problem statement, logic, relevant flow		
	charts, output and discussion.)		