Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Discuss the affinity laws in pump?	4	CO1
Q 2	List the different types of compressors used industrially. How is compressibility factor defined?	4	CO1
Q 3	Discuss the Bernoulli's theorem with application to pipeline pressure drop.	4	CO1
Q 4	Three liquids A, B, and C are blended together in the ratio of $20 \%, 30 \%$, and 50% respectively. Calculate the specific gravity of the blended liquid if the individual liquids have the following specific gravities at $40^{\circ} \mathrm{C}$: Specific gravity of liquid A: 0.845 Specific gravity of liquid B: 0.798 Specific gravity of liquid C: 0.901	4	CO1
Q 5	Explain the Darcy law and its application to the fluid mechanics?	4	CO2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Explain the characteristics curves of the following pump types with clear diagram (1) Centrifugal pump (2) Reciprocating pump	10	CO2
Q 7	Derive the below equation for parallel pipeline flow	10	CO3

	$Q_{1}=\frac{Q \text { Const } 1}{1+\text { Const } 1}$ Or Explain the concept of Equivalent length in case of series pipeline. Derive the applicable equation.		
Q 8	A parallel pipe system, similar to the one shown in the below Figure is located in a horizontal plane with the following data: Flow rate $\mathrm{Q}=2000 \mathrm{gal} / \mathrm{min}$ of water Pipe branch $\mathrm{BCE}=12 \mathrm{in}$. diameter, 8000 ft Pipe branch $\mathrm{BDE}=10 \mathrm{in}$. diameter, 6500 ft Calculate the flow rate through each parallel pipe and the equivalent pipe diameter for a single pipe 5000 ft long between B and E to replace the two parallel pipes.	10	$\mathrm{CO4}$
Q 9	Natural gas is compressed isothermally at $30^{\circ} \mathrm{C}$ from an initial pressure of 20 bara to a pressure of 50 bara. The gas gravity is 0.65 . Calculate the work done in compressing 4 kg of gas. Use 1 atm and $15.5^{\circ} \mathrm{C}$ for the base pressure and temperature, respectively. Specific heat ratio of gas is 1.24 1) Isothermal compression 2) Adiabatic compression 3) Calculate the temperature increase. $W a=\frac{286.76}{G} T_{1}\left(\frac{\gamma}{\gamma-1}\right)\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right] \quad W i=\frac{286.76}{G} T_{1} \log _{e}\left(\frac{P_{2}}{P_{1}}\right)$	10	$\mathrm{CO5}$
SECTION-C(2Qx20M=40 Marks)			
Q 10	One large pump and one small pump are operated in series. The H-Q characteristics of the pumps are defined as follows:	20	CO4

	Pump 1 Q, gal/min 0 800 1600 2400 3000 H, ft 2389 2325 2175 1763 1350 Pump 2 Q, gal/min 0 800 1600 2400 3000 H, ft 796 775 725 588 450 (a) Calculate the combined performance of pump 1 and pump 2 in series configuration. (b) What changes (trimming impellers) must be made to one of the pumps to satisfy the requirement of 2000 ft of head at $2400 \mathrm{gal} / \mathrm{min}$ when operated in series? Do the calculation upto the first trial value. (c) Can these pumps be configured to operate in parallel?		
Q 11	A natural gas pipeline consists of two different pipe segments connected in series, pumping the same uniform flow rate of $3.0 \mathrm{MSm} 3 /$ day at $20^{\circ} \mathrm{C}$. The first segment, DN 500 with 12 mm wall thickness, is 20 km long. The second segment is DN 400, 10 mm wall thickness, and 25 km long. The inlet pressure is 8500 kPa . Assuming flat terrain, calculate the delivery pressure, using the General Flow equation and the Colebrook friction factor of 0.02. The gas gravity $=0.65$ and viscosity $=0.000119$ Poise. The compressibility factor $\mathrm{Z}=$ 0.9 . The base temperature $=15^{\circ} \mathrm{C}$ and base pressure $=101 \mathrm{kPa}$. Compare results using the equivalent length method as well as the method using individual pipe segment pressure drops. A 16 in. crude oil pipeline (0.250 in . wall thickness) is 30 miles long from point A to point B. The flow rate at the inlet A is $4000 \mathrm{bbl} / \mathrm{hr}$. The crude oil properties are specific gravity of 0.85 and viscosity of 10 cSt at a flowing temperature of $70^{\circ} \mathrm{F}$. (a) Calculate the pressure required at A without any pipe loop. Assume 50 psi delivery pressure at the terminus B and a flat pipeline elevation profile. (b) If a 10 mile portion CD, starting at milepost 10 , is looped with an identical 16 in. pipeline, calculate the reduced pressure at A.	20	$\mathrm{CO5}$

	(c) What is the difference in pump HP required at A between cases (a) and (b) above? Assume 80% pump efficiency and 25 psi pump suction pressure. Consider friction factor as $\mathrm{f}=0.0213$ $\mathrm{P}_{\mathrm{m}}=0.0605 \mathrm{fQ}^{2}\left(\mathrm{Sg} / \mathrm{D}^{5}\right)$		

