Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Pipeline Transportation of Oil & Gas Program: B.Tech CERP Course Code: CHGS3007P Instructions: Assume any missing data suitably Semester:7th semTime:03 hrs.Max. Marks:100

SECTION A (50x4M=20Marks)

S. No.	(5 2x +1 1 -201 11R 5)		
5 . NO.		Marks	CO
Q 1	Discuss the affinity laws in pump?	4	CO1
Q 2	List the different types of compressors used industrially. How is compressibility factor defined?	4	C01
Q 3	Discuss the Bernoulli's theorem with application to pipeline pressure drop.	4	CO1
Q 4	Three liquids A, B, and C are blended together in the ratio of 20%, 30%, and 50% respectively. Calculate the specific gravity of the blended liquid if the individual liquids have the following specific gravities at 40°C: Specific gravity of liquid A: 0.845 Specific gravity of liquid B: 0.798 Specific gravity of liquid C: 0.901	4	CO1
Q 5	Explain the Darcy law and its application to the fluid mechanics?	4	CO2
	SECTION B	I	
	(4Qx10M= 40 Marks)		
Q 6	Explain the characteristics curves of the following pump types with clear diagram (1) Centrifugal pump (2) Reciprocating pump	10	CO2
Q 7	Derive the below equation for parallel pipeline flow	10	CO3

			1
	$Q_1 = \frac{QConst1}{1 + Const1}$		
	Or		
	Explain the concept of Equivalent length in case of series pipeline. Derive the applicable equation.		
Q 8	A parallel pipe system, similar to the one shown in the below Figure is located in a horizontal plane with the following data: Flow rate Q=2000 gal/min of water Pipe branch BCE=12 in. diameter, 8000 ft Pipe branch BDE=10 in. diameter, 6500 ft Calculate the flow rate through each parallel pipe and the equivalent pipe diameter for a single pipe 5000 ft long between B and E to replace the two parallel pipes.	10	CO4
Q 9	Natural gas is compressed isothermally at 30°C from an initial pressure of 20 bara to a pressure of 50 bara. The gas gravity is 0.65. Calculate the work done in compressing 4 kg of gas. Use 1 atm and 15.5 °C for the base pressure and temperature, respectively. Specific heat ratio of gas is 1.24 1) Isothermal compression 2) Adiabatic compression 3) Calculate the temperature increase. $Wa = \frac{286.76}{G} T_1 \left(\frac{\gamma}{\gamma - 1}\right) \left[\left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right] \qquad Wi = \frac{286.76}{G} T_1 \operatorname{Log}_e\left(\frac{P_2}{P_1}\right)$	10	CO5
	SECTION-C (2Qx20M=40 Marks)		<u>.</u>
Q 10	One large pump and one small pump are operated in series. The H-Q characteristics of the pumps are defined as follows:	20	CO4

	Pump 1					 		
	Q, gal/min H, ft	0 2389	800 2325	1600 2175	2400 1763	3000 1350		
	Pump 2							
	Q, gal/min H, ft	0 796	800 775	1600 725	2400 588	3000 450		
	(a) Calculate configuration.	the combine	d performan	nce of pump	1 and pum	p 2 in series		
	(b) What chan, satisfy the requirements series? Do the	uirement of	2000 ft of h	ead at 2400				
	(c) Can these p	oumps be con	figured to o	perate in para	allel?			
Q 11	A natural gas p series, pumpir first segment, I segment is DN is 8500 kPa. A General Flow gravity = 0.65 0.9. The base results using individual pipe DN=OD	ng the same DN 500 with 400, 10 mm Assuming fla equation an and viscosity temperature the equivale e segment pro-	uniform flow 12 mm wal wall thickness t terrain, cal d the Coleby y = 0.000119 $= 15^{\circ}C$ and ent length m	w rate of 3.0 I thickness, i ess, and 25 k culate the de prook friction Poise. The d base press nethod as w	MSm3/day s 20 km long m long. The livery pressu factor of 0 compressibilities ure = 101 k	at 20°C. The g. The second inlet pressure ure, using the .02. The gas ity factor $Z =$ Pa. Compare		
		Q =	1.1494×10 ⁻³	$\left(\frac{T_b}{P_b}\right) \left[\frac{\left(P_1^2 - P_1\right)}{GT_f LZ}\right]$	$\left[\frac{p_2^2}{g}\right]^{0.5} D^{2.5}$ (S	SI units)	20	CO
	Or	Q =	1.1494×10 ⁻³	$\left(\frac{T_b}{P_b}\right) \left[\frac{\left(P_1^2 - F\right)}{GT_f LZ}\right]$	$\left[\frac{p^2}{2f}\right]^{0.5} D^{2.5}$ (S	SI units)	20	CO

(c) What is the different	ence in pump HP required at A between cases (a) and	(b)
above? Assume 80%	pump efficiency and 25 psi pump suction pressure.	
Consider friction fact	or as f=0.0213	
$P_m = 0.0605 f$	$\mathcal{D}^{2}(S\sigma/D^{5})$	