Name:

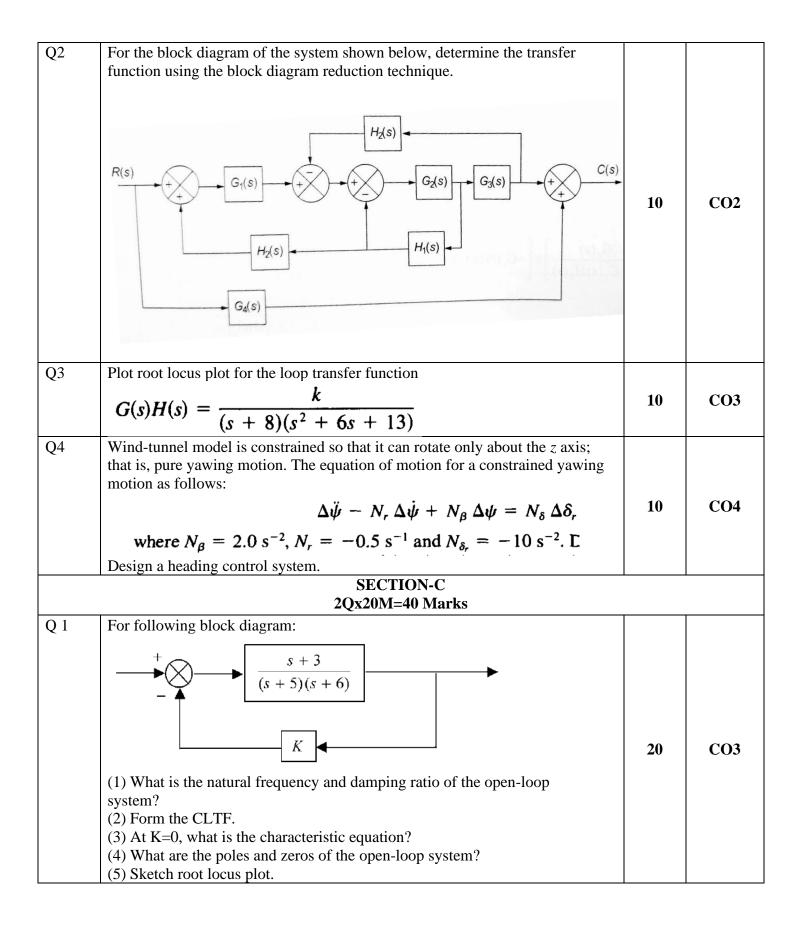
Enrolment No:

Semester: VII

Time: 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES


End Semester Examination, December 2022

Course: Introduction to Automatic Flight Control

Program: B.Tech ASE

Course Code: ASEG4015

SECTION A 5Qx4M=20Marks				
S. No.		Marks	CO	
Q 1	Differentiate between open-loop and close-loop control system for aircraft pitch angle.	4	CO1	
Q 2	Solve Block diagram given as $\begin{array}{c} X(s) \\ + \\ \hline \\ K_C \end{array} \begin{array}{c} G_2 \\ \hline \\ H \end{array}$	4	CO2	
Q 3	Determine the range of values of k for which the following systems are stable: $s^4 + 4s^3 + 13s^2 + 36s + k = 0$	4	CO3	
Q 4	Find poles and zeros and angles of asymptotes for root locus of following control system. $ \frac{R(s)}{s(s+1)} = \frac{s+3}{s(s+1)} $ $ \frac{C(s)}{s(s+1)} = \frac{C(s)}{s(s+1)} $	4	CO3	
Q5	Why is Stability augmentation system (SAS) used in aircraft?	4	CO4	
	SECTION B 4Qx10M= 40 Marks	1		
Q 1	Explain function of Instrument landing system ILS of aircraft.	10	CO1	

Q2	Assume that the aircraft has only one degree of freedom-a pitching motion about the centre of gravity. The pitching equations have the numerical values $ \ddot{\theta} + 0.071 \dot{\theta} + 5.49 \theta = -6.71 \delta_e $ Design stability augmentation control system. Elevator deflection in proportion to the pitch rate and adding it to the pilot's control input. The elevator deflection in proportion to the pitch rate and adding it to the pilot's control input. Provide level 1 flying qualities so that $\zeta > 0.3$. OR Design an altitude hold control system for STOL transport that has been modified to include direct-lift control surfaces. Unlike conventional high-lift flaps, the direct-lift flaps can be rotated up and down to increase or decrease the lift force on the wing. Assume that the airplane's velocity and pitch attitude are controlled by separate autopilots.	20	CO4
	controlled by separate autophots.		