Name: Enrolment No:			
Cours Progra Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Space Dynamics \& Orbital Mechanics m: B.Tech ASE/ ASE+AVE Code: ASEG4012 ions: a) All questions are compulsory. b) Assume any suitable value for the missing data c) For man-made earth satellites use $\mu=\mathbf{3 9 8} \mathbf{6 0 0} \mathrm{km}^{2} / \mathrm{s}^{2} . R_{E}=6378 \mathrm{k}$	ster: VII Marks	hrs.
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q 1	What kind of orbits are preferred for GPS satellites? How it is different from polar orbit?	4	CO1
Q 2	Calculate the velocity of an artificial satellite orbiting the Earth in a circular orbit at an altitude of 200 km above the Earth's surface.	4	CO2
Q 3	Explain the Perturbations due to Non-Spherical Earth. Justify your answer.	4	CO2
Q 4	What are the objectives of Chandrayaan-2 mission by ISRO? Explain the key learnings from the mission.	4	CO3
Q 5	Draw and explains the satellite attitude control system.	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	A hyperbolic earth departure trajectory has a perigee altitude of 300 km and a perigee speed of $15 \mathrm{~km} / \mathrm{s}$. (a) Calculate the hyperbolic excess speed (km / s) (b) Find the radius (km) when the true anomaly is 100° (c) Find v_{r} and $v_{\perp}(\mathrm{km} / \mathrm{s})$ when the true anomaly is 100°.	10	CO2
Q 7	A rocket launched from the surface of the earth has a speed of $8.85 \mathrm{~km} / \mathrm{s}$ when powered flight ends at an altitude of 550 km . The flight path angle at this time is 6°. Determine (a) the eccentricity of the trajectory; (b) the period of the orbit.	10	CO2
Q 8	For the earth-moon system, find the distance of the $L 1, L 2$ and $L 3$ Lagrange points from the center of mass of the sun-earth system OR	10	CO 3

	A satellite is in a circular earth orbit of altitude 400 km . Determine the new perigee and apogee altitudes if the satellite on-board engine (a) increases the speed of the satellite in the flight direction by $240 \mathrm{~m} / \mathrm{s}$. (b) gives the satellite a radial (outward) component of velocity of $240 \mathrm{~m} / \mathrm{s}$.		
Q 9	Two geocentric elliptical orbits have common apse lines and their perigees are on the same side of the earth. The first orbit has a perigee radius of r_{p} $=7000 \mathrm{~km}$ and $\mathrm{e}=0.3$, whereas for the second orbit $\mathrm{r}_{\mathrm{p}}=32000 \mathrm{~km}$ and $\mathrm{e}=0.5$ (a) Find the minimum total delta-v and the time of flight for a transfer from the perigee of the inner orbit to the apogee of the outer orbit. (b) Do part (a) for a transfer from the apogee of the inner orbit to the perigee of the outer orbit.	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	a). A spacecraft is in a circular parking orbit with an altitude of $\mathbf{2 0 0} \mathbf{~ k m}$. Calculate the velocity change required to perform a Hohmann transfer to a circular orbit at geosynchronous altitude. Draw the trajectory of Hohmann transfer with suitable equations.	10	CO 3
	b). Define Kepler Laws? The period of revolution of the earth about the sun is $\mathbf{3 6 5 . 2 5 6}$ days. The semi-major axis of the earth's orbit is $1.49527 * 1 \mathbf{1 0}^{11} \mathbf{m}$. The Semi-major axis of the orbit of Mars is $\mathbf{2 . 2 7 8 3} \mathbf{* 1 0}^{\mathbf{1 1}} \mathbf{m}$. Calculate the period of Mars.	10	CO 2

