| Name: |
| :--- | :--- |
| Enrolment No: |

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, December- 2022

Programme Name: B. Tech. (APE Upstream)
Course Name : Computational Method in Petroleum Engineering
Course Code : PEAU 4021P
Nos. of page(s) : 03

Instructions:

i. Use of scientific calculator is allowed for calculations. Before use, please make sure that it is approved by the invigilator.
ii. Any pages used for rough work should be attach along with the answer script.
iii. Use of mobile is strictly prohibited.

SECTION A				
S. No.			Marks	CO
Q 1	State the difference betw	s elimination method and Gauss-Siedel method.	4	CO1
Q 2	You are asked to find the down two advantages	ny function, $y=f(x)$ using graphical method. List ntages of the method.	4	CO2
Q 3	Write the full expressio	r Newton's interpolating polynomial.	4	CO3
Q 4	How can you improve differential equation?	on obtained by Euler's method to solve ordinary two method.	4	CO4
Q 5	What is the difference b	richlet and Neumann boundary condition?	4	CO5
SECTION B				
Q 6	Use a step size, (i) $h=2$ trapezoidal method. Use Lagrange interpolat following data given bel	$h=4$, numerically integrate the following using $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ OR que to find the value of $f(x)$ at $\boldsymbol{x}=\mathbf{2}$, from the de the necessary conditions, wherever necessary.	10	CO3

Q 7	Determine the roots of the function, $f(x)=4 x^{3}-6 x^{2}+7 x-2.3$, using false position method to locate the roots. Employ an initial guess of, $x_{l}=0$, and $x_{u}=1$ and make $\mathbf{3}$ iterations and calculate the approximate error, ε_{a} for each iteration.	10	CO2
Q 8	Use $2^{\text {th }}$ order Runge-Kutta method to numerically solve the following differential equation, $\frac{d y}{d t}=-2 y+t^{2}$ From $t=0$ to $t=2$, with a step size (h) of $\mathbf{1}$. The initial condition of $y(0)=1$ is given.	10	CO4
Q 9	Obtain the temperature distribution of a long, thin rod by solving the partial differential with a length of 10 cm , from times, $t=0 \mathrm{~s}$ to $t=3 \mathrm{~s}$. The material properties are given as in Question No. $\mathbf{1 0}$. Use a step size of $\Delta x=2 \mathrm{~cm}$, and $\Delta t=1$ s. At $t=0$, the temperature of the rod was $5^{\circ} \mathrm{C}$ and the boundary conditions are fixed for all times at $T(0)=200^{\circ} \mathrm{C}$ and $\mathrm{T}(10)=100^{\circ} \mathrm{C}$. $k \frac{\partial^{2} T}{\partial x^{2}}=\frac{\partial T}{\partial t}$	10	CO5
SECTION-C			
Q 10	Use Liebmann's method to obtain the temperature distribution of the square heated plate (Fig. 1). Use a relaxation factor of $\mathbf{1 . 5}$. The dimensions of the plate is $4 \mathrm{~cm} \times 4$ cm . Use at-least two interior nodes in both horizontal and vertical directions. Note that the material is aluminum with specific heat, $C=0.2174 \mathrm{cal} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$ and density, $\rho=2.7 \mathrm{~g} / \mathrm{cm}^{3}$. The thermal conductivity, $k^{\prime}=0.49 \mathrm{cal} /\left(\mathrm{s} \cdot \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}\right)$, $\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0$	20	CO5
Q 11	Use Gauss elimination method to solve the following simultaneous linear	20	CO1

