Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Programme Name: B.Tech. (APEG)

:2

Course Name : Production Engineering II

Course Code : PEAU4013P

Semester : VII Time : 3 Hrs. Max. Marks : 100

Nos.	of page(s	5)			
Instructions:					

1. All questions are compulsory.

2. Assume any missing data, if any

S N Section - A (Attempt all questions)					
S. No.	(6Qx10M=60Marks)	Marks	CO		
Q1	List the advantages and disadvantages of both horizontal and vertical separators	10	CO1		
Q2	Draw the various components of a separator along with their respective functions.	10	CO1		
Q3	Enumerate and describe the variables that influence the stability of oil-water emulsion	10	CO2		
Q4	How the skin factor and flow efficiency provide insight into the formation damage		CO3		
Q5	List the features of different compression processes in a compressor	10	CO5		
Q6	Discuss the following attributes of the flow measurement devices a) Rangeability b) Repeatability	10	CO5		
	Section - B (Attempt all questions) (2Qx2M=40Marks)				
	A 20-wt% HCl is needed to propagate wormholes 3 feet from a 0.328-feet radius wellbore in a dolomite formation (specific gravity 2.71) with a porosity of 0.15. The designed injection rate is 0.15 bbl/min-ft, the diffusion coefficient is 10^{-9} m ² /sec, and the density of the 20 % HCl is 1.14 g/cm ³ . In linear core floods, 2-pore volume is needed for wormhole breakthrough at the end of the core. Calculate the following	20	CO3		
Q7	a) Chemical reaction involved (Marks -1)				
	b) Gravimetric dissolving power (Marks -2)				
	c) Volumetric dissolving power (Marks -2)				
	d) Acid capillary number (Marks - 5)				
	e) Acid volume requirement in gal/ft. using Daccord's model (Marks -5)				
	f) Acid volume requirement in gal/ft. using Volumetric model (Marks -5)				
Q8	a) A sandstone at a depth of 10000 feet has a poison's ratio of 0.25 and a pore-elastic constant of 0.72. The average density of the overburden	10+10	CO4		

formation is 160 lb/ft3. The pore pressure gradient in the sandstone is 0.38 psi/ft. Assuming a tectonic stress of 200 psi and a tensile strength of the sandstone of 1000 psi. Calculate the breakdown pressure for the sandstone.	
b) Differentiate between KGD and PKN fracture propagation model	
