Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Hydraulic Engineering Program: B Tech (Civil Engineering) Course Code: CIVL 3060

Semester: V Time : 03 hrs Max. Marks: 100

Instructions:

- 1) Mention Roll No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only
- 3) Calculators is allowed for the exam.

SECTION A (5Qx4M=20Marks)

S. No.	Question	Marks	СО
Q 1	Explain specific energy and differentiate between hydraulic gradient line and total energy line.	4	CO1
Q 2	Define the following terms: hydraulic jump, conjugate depth, sequent depth, laminar flow, major loss and minor loss.	4	CO1
Q 3	Estimate the discharge passing through the rectangular channel section which width 3m and depth is 1.2m. The bed slope of channels is 1: 4000 and Manning's n is 0.02.	4	CO3
Q 4	Determine the critical depth and critical velocity of flow in a trapezoidal channel with the width of 2 m side slope $1V:2H$ and flow rate of 8 m ³ /s.	4	CO3
Q 5	For the branching system shown in Fig.Q5, calculate the discharge in each pipe. Take f=0.02 for all pipes. Assume that the flow through pipe AJ and BJ is equal and neglect the minor losses. $ \frac{Pipe}{1 \\ 2 \\ 10 \\ 3 \\ 10 \\ 200 \\ BJ \\ 3 \\ 10 \\ 200 \\ JC $ $ \frac{V}{V}$	4	CO2

	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Proved that regular hexagon section is a hydraulically efficient and economical trapezoidal channel section. Design the hydraulically efficient and economical trapezoidal channel section for $100 \text{ m}^3/\text{s}$ discharge carries in channel section with bed slope of 1:2500 and manning's n is 0.015.	10	СО3
Q 7	Hydraulic jump occurs in a rectangular channel with the width of 9 m. If the depths of flow before and after the jump are 1.55 m and 3.08 m respectively, what would be the flow rate in the channel.	10	CO1
Q 8	Water flows under a sluice gate in a horizontal rectangular channel of 2 m wide. If the depths of flow before and after the gate are 4 m and 0.5 m compute the discharge in the channel (no head loss). $\qquad \qquad $	10	CO2
Q 9	The Drag force (F_D) on an sphere in laminar flow is known to depend on its diameter (D), velocity of flow (V), density of fluid (ρ), and coefficient of viscosity (μ). Obtain an expression for (F _D) using Buckingham Π method.	10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Water downstream of an spillway flows in a 100 ft wide rectangular channel with the depth of 0.6 ft and velocity of 18 ft /s. Determine the depth after the jump, Froude numbers before and after the jump, height of the jump, the head loss and power dissipated during the jump And plot the y vs specific energy. $(1m=3.28ft, g=32.17 ft/s^2)$	20	СО3

