

$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	What is the significance of noise in communication? Explain different types of noises in communication. Derive the expression of figure of merit for DSB-SC and SSB-SC system.	10 M	CO2
Q 7	Explain how FM is demodulated with suitable diagram using (a) Slope detector (b) Phase locked loop	10 M	CO2
Q 8	Explain how PAM signal is generated and detected using electronic circuits. OR Explain the following (a) Natural sampling and (b) Flat-top sampling	10 M	CO2
Q 9	What do you understand by PCM system. Draw the waveform of the following line codes for the binary word 10110011. (a) UNRZ (b) BNRZ (c) BNRZ (d) URZ (e) BRZ (f) Manchester Code (g) BRZ-AMI	10 M	CO1
$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q 10	(a) An amplitude modulated amplifier has power output of 50 W at 100% modulation and the internal loss in the modulator is 10 W . (i) Calculate the unmodulated carrier power (ii) What power output is required from the modulator (iii) If 100% modulation is reduced to 75%. How much output is needed from the modulator. (b) An amplitude modulated wave is given by the following equation: $E=15(1+0.7 \cos (6000 t)-0.4 \cos (10000 t)) * \sin \left(5 * 10^{6} t\right)$ Find the modulation index, amplitude of the carrier signal and modulating signal, lower and upper sideband frequencies.	20M	CO3
Q 11	(a)Design and explain the synchronous detection of FSK and PSK system. (b) An on-off binary system uses the pulse waveforms $s_{i}(t)=\left\{\begin{array}{c} s_{1}(t)=A \sin \frac{\pi t}{T} ; 0 \leq t \leq T \\ s_{2}(t)=0 ; 0 \leq t \leq T \end{array}\right.$ Let $\mathrm{A}=0.2 \mathrm{mV}$ and $\mathrm{T}=2 \mu \mathrm{~s}$. Additive white noise with a power spectral density $\frac{\eta}{2}=10^{-15} \mathrm{~W} / \mathrm{Hz}$ is added to the signal. Determine the probability of error when $P\left(s_{1}\right)=P\left(s_{2}\right)=\frac{1}{2}$.	20M	$\mathrm{CO4}$

