Name: Enrolment No:			
Course: Fluid Mechanics and Fluid Machines Semester $: V$ Program: B. Tech Mechatronics Time $: 03 \mathrm{hrs}$ Course Code: MECH3028 Max. Marks : 100 Instructions: Assume suitable data if required			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Enunciate Newton's law of viscosity. Explain the importance of viscosity in fluid motion.	4	CO1
Q 2	Prove that the streamline and equipotential lines are mutually orthogonal.	4	CO1
Q 3	Define a steady flow field in the Eulerian reference frame. In such a steady flow, is it possible for a fluid particle to experience a nonzero acceleration?	4	CO1
Q 4	Differentiate between the following heads for a centrifugal pump: Static head, Monomeric head, Net positive suction head, Euler head. Clearly write the expressions for each.	4	CO1
Q 5	Derive an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of jet.	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q6	Two large plane surfaces are 2.4 cm apart. The space between the surface is filled with glycerine. What force is required to drag a very thin plate of surface area 0.5 square meter between the two plane surface at a speed of $0.6 \mathrm{~m} / \mathrm{s}$, if the thin plate is at a distance of 0.8 cm from one of the plane surfaces? Take the dynamic viscosity of glycerine $=8.1 \times 10^{-1} \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}$.	10	CO3
Q7	The velocity potential function is given by $\varphi=5\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$. Calculate the velocity components at the point $(4,5)$.	10	CO2
Q8	An oil of viscosity $0.1 \mathrm{Ns} / \mathrm{m}^{2}$ and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and of length 300 m . The rate of flow of fluid through the pipe is $3.5 \mathrm{l} / \mathrm{s}$. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall.	10	CO2
Q9	Derive an expression for work done by impeller of a centrifugal pump on water per second per unit weight of water. (OR) Internal and external diameters of the impeller of a centrifugal pump are 300 mm and 600 mm respectively. The pump is running at $1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The vane angles are at inlet and outlet are 20° and 30° respectively. The water enters the impeller	10	CO3

	radially and velocity of the flow is constant. Determine the work done by the impeller per unit weight of water.		
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q10	A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter, and its diameter is suddenly enlarged to 300 mm . The height of water level in the tank is 8 m above the centre of the pipe. Considering all losses of head which occur, determine the rate of flow. Take $\mathrm{f}=0.01$ for both sections of the pipe.	20	$\mathrm{CO4}$
Q11	A jet of water from a nozzle is deflected through 60° from its original direction by a curved plate which it enters tangentially with out shock with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and leaves with a mean velocity of $25 \mathrm{~m} / \mathrm{s}$. If the discharge from the nozzle is $0.8 \mathrm{~kg} / \mathrm{s}$, calculate the magnitude and direction of the resultant force on the vane, if the vane is stationary. (OR) Explain the working of a Kaplan turbine with sketches. Draw velocity diagrams and derive the equation for hydraulic efficiency.	20	$\mathrm{CO4}$

