Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Fluid Mechanics and Fluid Machines Program: B. Tech Mechatronics Course Code: MECH3028 Semester : V Time : 03 hrs. Max. Marks : 100

Instructions: Assume suitable data if required

| SECTION A<br>(5Qx4M=20Marks) |                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
|                              |                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |  |
| Q 1                          | Enunciate Newton's law of viscosity. Explain the importance of viscosity in fluid motion.                                                                                                                                                                                                                                                                                                                  | 4  | CO1 |  |
| Q 2                          | Prove that the streamline and equipotential lines are mutually orthogonal.                                                                                                                                                                                                                                                                                                                                 | 4  | CO1 |  |
| Q 3                          | Define a steady flow field in the Eulerian reference frame. In such a steady flow, is it possible for a fluid particle to experience a nonzero acceleration?                                                                                                                                                                                                                                               | 4  | CO1 |  |
| Q 4                          | Differentiate between the following heads for a centrifugal pump: Static head,<br>Monomeric head, Net positive suction head, Euler head. Clearly write the<br>expressions for each.                                                                                                                                                                                                                        | 4  | CO1 |  |
| Q 5                          | Derive an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of jet.                                                                                                                                                                                                                                                                                            | 4  | CO1 |  |
|                              | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                  | I  |     |  |
|                              | (4Qx10M= 40 Marks)                                                                                                                                                                                                                                                                                                                                                                                         |    |     |  |
| Q6                           | Two large plane surfaces are 2.4 cm apart. The space between the surface is filled with glycerine. What force is required to drag a very thin plate of surface area 0.5 square meter between the two plane surface at a speed of 0.6 m/s, if the thin plate is at a distance of 0.8 cm from one of the plane surfaces? Take the dynamic viscosity of glycerine = $8.1 \times 10^{-1}$ N s/m <sup>2</sup> . | 10 | CO3 |  |
| Q7                           | The velocity potential function is given by $\varphi = 5(x^2-y^2)$ . Calculate the velocity components at the point (4,5).                                                                                                                                                                                                                                                                                 | 10 | CO2 |  |
| Q8                           | An oil of viscosity $0.1 \text{ Ns/m}^2$ and relative density $0.9$ is flowing through a circular pipe of diameter 50 mm and of length 300 m. The rate of flow of fluid through the pipe is $3.5 \text{ l/s}$ . Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall.                                                                                                    | 10 | CO2 |  |
| Q9                           | Derive an expression for work done by impeller of a centrifugal pump on water<br>per second per unit weight of water.<br>(OR)<br>Internal and external diameters of the impeller of a centrifugal pump are 300 mm<br>and 600 mm respectively. The pump is running at 1000 r.p.m. The vane angles are<br>at inlet and outlet are 20° and 30° respectively. The water enters the impeller                    | 10 | CO3 |  |

|                                | radially and velocity of the flow is constant. Determine the work done by the impeller per unit weight of water.                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| SECTION-C<br>(2Qx20M=40 Marks) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |  |
| Q10                            | A horizontal pipe line 40 m long is connected to a water tank at one end<br>and discharges freely into the atmosphere at the other end. For the first<br>25 m of its length from the tank, the pipe is 150 mm diameter, and its<br>diameter is suddenly enlarged to 300 mm. The height of water level in<br>the tank is 8 m above the centre of the pipe. Considering all losses of<br>head which occur, determine the rate of flow. Take f=0.01 for both<br>sections of the pipe.                                                | 20 | CO4 |  |
| Q11                            | A jet of water from a nozzle is deflected through 60° from its original direction<br>by a curved plate which it enters tangentially with out shock with a velocity of<br>30 m/s and leaves with a mean velocity of 25 m/s. If the discharge from the<br>nozzle is 0.8 kg/s, calculate the magnitude and direction of the resultant force<br>on the vane, if the vane is stationary.<br>(OR)<br>Explain the working of a Kaplan turbine with sketches. Draw velocity diagrams<br>and derive the equation for hydraulic efficiency. | 20 | CO4 |  |