Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: V

: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program Name: B.TECH-Mechanical Engineering

Course Name : Heat Transfer

Course Code : MECH3030

Nos. of page(s) : 02

Instructions: Attempt All Questions. One question from section B and C have an internal Choice. Assume any missing data if required.

SECTION A				
(5Qx4M=20Marks)				
S. No.	Statement of question	Marks	СО	
Q1	Discuss thermal diffusivity with its physical significance.	4	C01	
Q2	Elaborate importance of view factor in heat radiation.	4	CO1	
Q3	Analyze the concept of radiosity in radiative heat transfer.	4	CO2	
Q4	Analyze critical radius of insulation for combined (conductive and convective) heat transfer approach.	4	CO3	
Q5	Apply the concept of logarithmic mean temperature difference in any internal laminar flow.	4	CO4	
SECTION B				
(4Qx10M= 40 Marks)				
Q6	Explain the mechanism of film condensation heat transfer on vertical surface.	10	CO2	
Q7	A 20 m long and 8 cm diameter hot water pipe of a district heating system is buried in the soil 80 cm below the ground surface. The outer surface temperature of the pipe is 60°C. Taking the surface temperature of the earth to be 5°C and the thermal conductivity of the soil at that location to be 0.9 W/m° C, determine the rate of heat loss from the pipe.	10	соз	
Q8	During a cold winter day, wind at 55 km/h is blowing parallel to a 4-m- high and 10-m-long wall of a house. If the air outside is at 5°C and the surface temperature of the wall is 12°C, determine the rate of heat loss from that wall by convection. What would your answer be if the wind velocity was doubled?	10	соз	
Q9	Deduce mathematical formulation for three dimensional heat conduction equation with internal heat generation in cylindrical coordinates. OR Deduce mathematical formulation for three dimensional heat conduction equation with internal heat generation in spherical coordinates.	10	CO4	

	SECTION-C				
Q10	Consider a cylindrical furnace with radius and height of 1 m, as shown in figure .The top (surface 1) and the base (surface 2) of the furnace has emissivity ε_1 =0.8 and ε_2 =0.4, respectively, and are maintained at uniform temperatures T_1 =700 K and T_2 =500 K. The side surface closely approximates a blackbody and is maintained at a temperature of T_3 =400 K. Determine the net rate of radiation heat transfer at each surface during steady operation and explain how these surfaces can be maintained at specified temperatures. $T_1 = 700 \text{ K}$ $T_1 = 0.8$ $T_1 = 0.8$ $T_1 = 0.8$ $T_2 = 500 \text{ K}$ $T_3 = 400 \text{ K}$	20	CO3		
Q11	A counter-flow double-pipe heat exchanger is to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160°C at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m ² °C, determine the length of the heat exchanger required to achieve the desired heating. OR Hot oil is to be cooled by water in a 1-shell-pass and 8-tube-passes heat exchanger. The tubes are thin-walled and are made of copper with an internal diameter of 1.4 cm. The length of each tube pass in the heat exchanger is 5 m, and the overall heat transfer coefficient is 310 W/m ² · °C. Water flows through the tubes at a rate of 0.2 kg/s, and the oil through the shell at a rate of 0.3 kg/s. The water and the oil enter at temperatures of 20°C and 150°C, respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil.	20	CO4		