Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Digital Signal Processing Semester : 5th

Program: B.Tech. Electronics and Communication Time : 03 hrs.

Course Code: ECEG 3046 Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	CO		
Q 1	State all properties of DFT.	4M	CO3		
Q 2	What are the advantages of DSP processors in relation to general purpose processors?	4 M	CO1		
Q 3	What conditions are to be satisfied by the impulse response of an FIR system in order to have a linear phase?	4M	CO4		
Q 4	Sketch the block diagram representation of the discrete-time system described by the input-output relation. $Y(n) = \frac{1}{4}y(n-1) + \frac{1}{2}x(n) + \frac{1}{2}x(n-1)$ where x(n) is the input and y(n) is the output of the system.	4M	CO1		
Q 5	A digital communication link carries binary-coded words representing samples of an input signal $x_a(t) = 3cos600\pi t - 2cos1800\pi t$ The link is operated at 10,000 bits/s and each input sample is quantized into 1034 different voltage Ievels. (a) What is the sampling frequency and the folding frequency? (b) What is the Nyquist rate for the signal $x_a(t)$? (c) What are the frequencies in the resulting discrete-time signal $x(t)$? (d) What is the resolution?	4 M	CO3		
	SECTION B				
Q 6	(4Qx10M=40 Marks) Distinguish between linear and circular convolutions of two sequences. Check whether the following system is i) Linear, and ii) Time invariant. $y(n + 2) + 2y(n) = x(n + 1) + 2$	10M	CO1		

Q 7	Let X(k) is N DFT of x(n). Given two N/2 length sequences. $g(n) = a_1x(2n) + a_2x(2n+1) \qquad 0 \le n \le N/2 - 1$ $h(n) = a_3x(2n) + a_4x(2n+1) \qquad 0 \le n \le N/2 - 1$ Where $a_1a_2 \ne a_3a_4$. If G(k), H(k) is the N/2 DFT of g(n) and h(n)	10M	CO3
Q 8	Develop a 2-multiplier canonic realization for $H_1(z) = \frac{(1+\alpha_1+\alpha_2)(1+z^{-1})^2}{(1+\alpha_1z^{-1}+\alpha_2z^{-1})}$ Or Derive the radix-2 decimation-in -time FFT algorithm. Sketch the stages in the computation of an N = 8-point DFT	10M	CO2, CO3
Q 9	Consider an FIR filter with system function $H(z) = 1 + 2.88z^{-1} + 3.4048z^{-1} + 1.74z^{-1} + 0.4z^{-1}.$ Sketch the direct form and lattice realizations of the filter and determine in detail the corresponding input-output equations. Is the system minimum phase?	10M	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 i. Design an FIR Low Pass filter with ω_c = 1.4 π/s and N = 7 using Hamming window. Explain Gibb's phenomenon. ii. Given a second-order transfer function H(z) = (0.5(1-z⁻²))/(1+1.3z⁻¹ + 0.36z⁻² Perform the filter realizations and write the difference equations using the following realizations: Direct form I and direct form II. Cascade form via the first-order sections. Parallel form via the first-order sections. 	(10+10) M	CO4
Q 11	i. Sketch the block diagram for the direct-form realization and the frequency-sampling realization of the M = 32, a = 0, linear-phase (symmetric) FIR filter which has frequency samples $H(2\pi * k/32) = 1 \qquad k = 0,1,2$ $= \frac{1}{2} \qquad k = 3$ $= 0 \qquad k = 4,5,$	(10+10) M	C02, CO4

Comr	pare the computational complexity of these two structures.	
Comp		
ii.	Compare Chebyshev and Butterworth IIR filters. Define Gibbs phenomenon.	
	OR	
i.	Obtain the 8-point DFT of a given sequence $\{8,8,8,0,1,4,2,3\}$. DFT of a sequence $x(n)$ is given as $X(K) = \{64, 32, 80, 32\}$. Obtain the inverse DFT $x(n)$.	
ii.	Obtain the linear and circular convolution of the sequences a. {2, 1, 2, 1} and {1, 2, 3, 4}. b. {4, -1, 2, 3} and {2, 1, -3, 3}.	