Name: Enrolment No:			
Course: Digital Signal Processing Program: B.Tech. Electronics and Communication Course Code: ECEG 3046 Instructions:		S mester ne ax. Mark	hrs. 0
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	State all properties of DFT.	4M	$\mathrm{CO3}$
Q 2	What are the advantages of DSP processors in relation to general purpose processors?	4M	$\mathrm{CO1}$
Q 3	What conditions are to be satisfied by the impulse response of an FIR system in order to have a linear phase?	4M	$\mathrm{CO4}$
Q 4	Sketch the block diagram representation of the discrete-time system described by the input-output relation. $Y(n)=1 / 4 y(n-1)+1 / 2 x(n)+1 / 2 x(n-1)$ where $\mathrm{x}(\mathrm{n})$ is the input and $\mathrm{y}(\mathrm{n})$ is the output of the system.	4M	CO1
Q 5	A digital communication link carries binary-coded words representing samples of an input signal $x_{a}(t)=3 \cos 600 \pi t-2 \cos 1800 \pi t$ The link is operated at $10,000 \mathrm{bits} / \mathrm{s}$ and each input sample is quantized into 1034 different voltage Ievels. (a) What is the sampling frequency and the folding frequency? (b) What is the Nvquist rate for the signal $x_{a}(\mathrm{t})$? (c) What are the frequencies in the resulting discrete-time signal $\mathrm{x}(\mathrm{n})$? (d) What is the resolution?	4M	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Distinguish between linear and circular convolutions of two sequences. Check whether the following system is i) Linear, and ii) Time invariant. $y(n+2)+2 y(n)=x(n+1)+2$	10M	$\mathrm{CO1}$

Q 7	Let $\mathrm{X}(\mathrm{k})$ is N DFT of $\mathrm{x}(\mathrm{n})$. Given two $\mathrm{N} / 2$ length sequences. $\begin{array}{ll} g(n)=a_{1} x(2 n)+a_{2} x(2 n+1) & \\ h(n)=a_{3} x(2 n)+a_{4} x(2 n+1) & \\ h \leq n \leq N / 2-1 \\ h(n)-1 \end{array}$ Where $a_{1} a_{2} \neq a_{3} a_{4}$. If $\mathrm{G}(\mathrm{k}), \mathrm{H}(\mathrm{k})$ is the $\mathrm{N} / 2 \mathrm{DFT}$ of $\mathrm{g}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$ Find $\mathrm{X}(\mathrm{k})$ in terms of $\mathrm{G}(\mathrm{k})$ and $\mathrm{H}(\mathrm{k})$.	10M	CO 3
Q 8	Develop a 2-multiplier canonic realization for $\mathrm{H}_{1}(\mathrm{z})=\frac{\left(1+\alpha_{1}+\alpha_{2}\right)\left(1+z^{-1}\right)^{2}}{\left(1+\alpha_{1} z^{-1}+\alpha_{2} z^{-1}\right)}$ Or Derive the radix-2 decimation-in -time FFT algorithm. Sketch the stages in the computation of an $\mathrm{N}=8$-point DFT	10M	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO3} \end{aligned}$
Q 9	Consider an FIR filter with system function $\mathrm{H}(\mathrm{z})=1+2.88 z^{-1}+3.4048 z^{-1}+1.74 z^{-1}+0.4 z^{-1}$ Sketch the direct form and lattice realizations of the filter and determine in detail the corresponding input-output equations. Is the system minimum phase?	10M	CO 2
SECTION-C (2Qx20M=40 Marks)			
Q 10	i. Design an FIR Low Pass filter with $\omega_{c}=1.4 \pi / \mathrm{s}$ and $\mathrm{N}=7$ using Hamming window. Explain Gibb's phenomenon. ii. Given a second-order transfer function $\mathrm{H}(\mathrm{z})=\frac{0.5\left(1-\mathrm{z}^{-2}\right)}{1+1.3 \mathrm{z}^{-1}+0.36 \mathrm{z}^{-2}}$ Perform the filter realizations and write the difference equations using the following realizations: 1. Direct form I and direct form II. 2. Cascade form via the first-order sections. 3. Parallel form via the first-order sections.	$(10+10) \mathrm{M}$	CO4
Q 11	i. Sketch the block diagram for the direct-form realization and the frequency-sampling realization of the $\mathrm{M}=32, \mathrm{a}=0$, linear-phase (symmetric) FIR filter which has frequency samples $\begin{array}{rlr} H(2 \pi * k / 32) & =1 & k=0,1,2 \\ & =1 / 2 & k=3 \\ & =0 & k=4,5, . \end{array}$ 15	$(10+10) \mathrm{M}$	$\begin{aligned} & \mathrm{C02}, \\ & \mathrm{CO} 4 \end{aligned}$

