Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2022** Course: Digital Signal Processing Semester : 5th Program: B.Tech. Electronics and Communication Time : 03 hrs. Course Code: ECEG 3046 Max. Marks: 100 ## **Instructions:** | SECTION A
(5Qx4M=20Marks) | | | | | | |------------------------------|---|------------|-----|--|--| | S. No. | | Marks | CO | | | | Q 1 | State all properties of DFT. | 4M | CO3 | | | | Q 2 | What are the advantages of DSP processors in relation to general purpose processors? | 4 M | CO1 | | | | Q 3 | What conditions are to be satisfied by the impulse response of an FIR system in order to have a linear phase? | 4M | CO4 | | | | Q 4 | Sketch the block diagram representation of the discrete-time system described by the input-output relation. $Y(n) = \frac{1}{4}y(n-1) + \frac{1}{2}x(n) + \frac{1}{2}x(n-1)$ where x(n) is the input and y(n) is the output of the system. | 4M | CO1 | | | | Q 5 | A digital communication link carries binary-coded words representing samples of an input signal $x_a(t) = 3cos600\pi t - 2cos1800\pi t$ The link is operated at 10,000 bits/s and each input sample is quantized into 1034 different voltage Ievels. (a) What is the sampling frequency and the folding frequency? (b) What is the Nyquist rate for the signal $x_a(t)$? (c) What are the frequencies in the resulting discrete-time signal $x(t)$? (d) What is the resolution? | 4 M | CO3 | | | | | SECTION B | | | | | | Q 6 | (4Qx10M=40 Marks) Distinguish between linear and circular convolutions of two sequences. Check whether the following system is i) Linear, and ii) Time invariant. $y(n + 2) + 2y(n) = x(n + 1) + 2$ | 10M | CO1 | | | | Q 7 | Let X(k) is N DFT of x(n). Given two N/2 length sequences. $g(n) = a_1x(2n) + a_2x(2n+1) \qquad 0 \le n \le N/2 - 1$ $h(n) = a_3x(2n) + a_4x(2n+1) \qquad 0 \le n \le N/2 - 1$ Where $a_1a_2 \ne a_3a_4$. If G(k), H(k) is the N/2 DFT of g(n) and h(n) | 10M | CO3 | |------|--|-----------|-------------| | Q 8 | Develop a 2-multiplier canonic realization for $H_1(z) = \frac{(1+\alpha_1+\alpha_2)(1+z^{-1})^2}{(1+\alpha_1z^{-1}+\alpha_2z^{-1})}$ Or Derive the radix-2 decimation-in -time FFT algorithm. Sketch the stages in the computation of an N = 8-point DFT | 10M | CO2,
CO3 | | Q 9 | Consider an FIR filter with system function $H(z) = 1 + 2.88z^{-1} + 3.4048z^{-1} + 1.74z^{-1} + 0.4z^{-1}.$ Sketch the direct form and lattice realizations of the filter and determine in detail the corresponding input-output equations. Is the system minimum phase? | 10M | CO2 | | | SECTION-C
(2Qx20M=40 Marks) | | | | Q 10 | i. Design an FIR Low Pass filter with ω_c = 1.4 π/s and N = 7 using Hamming window. Explain Gibb's phenomenon. ii. Given a second-order transfer function H(z) = (0.5(1-z⁻²))/(1+1.3z⁻¹ + 0.36z⁻² Perform the filter realizations and write the difference equations using the following realizations: Direct form I and direct form II. Cascade form via the first-order sections. Parallel form via the first-order sections. | (10+10) M | CO4 | | Q 11 | i. Sketch the block diagram for the direct-form realization and the frequency-sampling realization of the M = 32, a = 0, linear-phase (symmetric) FIR filter which has frequency samples $H(2\pi * k/32) = 1 \qquad k = 0,1,2$ $= \frac{1}{2} \qquad k = 3$ $= 0 \qquad k = 4,5,$ | (10+10) M | C02,
CO4 | | Comr | pare the computational complexity of these two structures. | | |------|---|--| | Comp | | | | ii. | Compare Chebyshev and Butterworth IIR filters. Define Gibbs phenomenon. | | | | OR | | | i. | Obtain the 8-point DFT of a given sequence $\{8,8,8,0,1,4,2,3\}$. DFT of a sequence $x(n)$ is given as $X(K) = \{64, 32, 80, 32\}$. Obtain the inverse DFT $x(n)$. | | | ii. | Obtain the linear and circular convolution of the sequences a. {2, 1, 2, 1} and {1, 2, 3, 4}. b. {4, -1, 2, 3} and {2, 1, -3, 3}. | |