Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2022

Course: Mass Transfer-II
Program: B. Tech CERP
Semester: V
Time 03 hrs.

Course Code: CHCE-3029 Max. Marks: 100

Instructions:

SECTION A (20 Marks)				
S. No.		Marks	CO	
Q.1	Explain the equilibrium in the gas-liquid system. Why lower temperature is preferred for gas absorption	4	CO1	
Q.2	What are the important criteria for solvent selection in liquid-liquid extraction?	4	CO1	
Q.3	Explain the process variables which affect the rate of mass transfer in "solid-liquid extraction" operation.	4	CO1	
Q.4	Discuss the physical mechanism of drying.	4	CO1	
Q.5	Describe the different types of adsorption isotherms observed for various adsorbent-adsorbate pairs.	4	CO1	
	SECTION B (40 Marks)			
Q.1	A feed having 12 mol% solute is to be scrubbed at a rate of 7000 m ³ /h (27°C; 1 atm) with a pure solvent. The target removal of the solute is 95 %. The flow rate of the solvent is 160 kmol/h. If the equilibrium relationship is $y = 0.5 x$, Determine the number of ideal trays required (a) using Kremser equation	10	CO2	
Q. 2	A stream of waste-water containing 4% benzoic acid is to be extracted with benzene at a rate of 2000 kg/h in order to remove 96% of the solute. If water and benzene are assumed to be mutually immiscible and the distribution coefficient at given temperature is $K = \frac{W_W}{W_b} = 1.8$ Determine the minimum rate of benzene required for countercurrent separation of the mixture and the number of stages required if 1.3 times the minimum solvent is used.	10	CO2	
Q.3	In a laboratory test run, the rate of drying was found to be 5×10^{-4} kg/m ² .s when the moisture content reduced from 0.4 to 0.1. The critical moisture content of the material	10	CO3	

	is 0.08 on a dry basis. A tray drier is used to dry 100 kg (dry basis) of the same material under identical conditions. The surface area of the material is 0.04 m²/kg of the dry solid. Calculate the time required to reduce the moisture content of the solids from 0.3 to 0.2		
Q.4	Derive a general expression for Langmuir isotherm. Adsorption of a pure gas A (molecular weight = 65) on activated carbon follows the Langmuir isotherm. $q = \frac{6.4 p}{1 + 1.53 p}; \qquad p in kPa and q in mmol/g$ Estimate the maximum quantity of gas (in kg adsorbate per kg carbon) that can be adsorbed.	10	CO3
	Section C (40 Marks)		
Q. 1	Warm moist air (dry-bulb temperature = 85°C; wet-bulb temperature = 46°C) enters a tower at a rate of 5000 kg/h.m². It is to be cooled and dehumidified to a wet-bulb temperature of 31°C using water available at 26°C. The overall gas phase mass transfer coefficient is estimated to be 2300 kg/h.m². The water rate is 1.25 times the minimum. Calculate the height of the cooling tower.	20	CO4
Q. 2	Ammonia is to be scrubbed from an air stream before it can be discharged in the atmosphere in a small packed tower by contacting it with a solvent. The feed gas is 2 % ammonia by volume, and 96 % of it is to be absorbed. The total gas rate is 150 m³/h at 25 °C and 1.1 bar absolute pressure. The liquid enters the column at a rate of 1.80 kmol/h. Determine the overall gas phase mass transfer units and packed height if the column is 1 ft in diameter. Given: the overall mass transfer coefficient, $K_G = 3.5 \times 10^{-4} kmol/(m^2)(s)(\Delta P, bar)$; The effective gas-liquid contact area = 102 m² per m³ of packed volume; $k_y \bar{a} = 130 \frac{kmol}{(m)^3(h)(\Delta y)}$ Slope of the equilibrium line, m = 0.17	20	CO4