

	(b)Find the input $x(n)$ of the system if the impulse response $h(n)$ and the output $y(n)$ are given as: $h(n)=\{2,2,0,-1,2\} ; y(n)=\{2,-5,2,1,6,-11,6\}$		
Q11	(a)Write a Matlab Code to obtain a reconstructed waveform from sampled signal with the sampling rate of 0.1 sec with the number of samples as 10. (b)Find the 8-point DFT of $x(n)=\{1,1,0,0,1,0,1,1\}$. Use the property of conjugate symmetry. (or)	CO4	
(c)Implement the decimation-in-frequency FFT algorithm of N-point DFT where $N=8$. Also explain the steps involved in this algorithm. Draw the butterfly line diagram for 8-point FFT calculation and briefly explain. Use decimation-in-frequency algorithm.	$\mathbf{1 0 + 1 0}$		
(d) Find the 4-point DFT of the sequence $x[n]=\{1,2,1,3\}$ by			
(i) DIT FFT algorithm (ii) DIF FFT algorithm. Plot the magnitude and			
phase for the same.			

