Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Digital Signal Processing Program: B.Tech ASE AVE Course Code: ECEG3040 Instructions:

Semester: V Time : 03 hrs. Max. Marks: 100

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q1.	Find the even and odd components of the following signals: (a) $x(n) = \{5, 4, 3, 2, 1\}$ (b) $x(n) = \{5, 4, 3, 2, 1\}$	4	CO1
Q2.	Check whether the following systems are causal or not: (a) $y(n) = sin[x(n)]$ (b) $y(n) = x(-n)$	4	CO1
Q3.	List the advantages of Digital Signal Processing.	4	CO2
Q4.	Define twiddle factor.	4	CO2
Q5.	Find the DTFT of the sequences (a) $x(n) = \delta(n)$ (b) $x(n) = u(n-4)+u(n+4)$	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q6.	Determine whether the following systems are time-invariant or not (a) $y(n) = x(n/2)$ (b) $y(n) = x(n)$ (c) $y(n) = x^2 (n-2)$ (d) $y(n) = x(n) + n x (n-2)$	10	CO2
Q7.	Compute the circular convolution of the following sequences and compare it with linear convolution $x(n) = \{1, 2, 2, -1\}; h(n) = \{1, 2, 3, 4\}$	10	CO3
Q8.	Consider a discrete-time LTI system with impulse response $h(n) = (1/2)^n u(n)$ Use Discrete Fourier transform to determine the response to the signal $x(n) = (3/4)^n u(n)$.	10	CO3
Q9.	(a)Write a Matlab Code to plot the standard signals ramp, sinusoidal and time shifted impulse by 5 units (b)Find the 4-point DFT of $x(n) = \{1, -2, 3, 2\}$.	5+5	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q10	(a)Find the inverse Z-Transform of		
	z ⁻¹	8+12	
	$X(z) = \frac{z^{-1}}{3 - 4z^{-1} + z^{-2}}$, ROC lzl >1		CO3

Q11.	 (b)Find the input x(n) of the system if the impulse response h(n) and the output y(n) are given as: h(n) = {2, 2, 0, -1, 2}; y(n) = {2, -5, 2, 1, 6, -11, 6} (a)Write a Matlab Code to obtain a reconstructed waveform from sampled signal with the sampling rate of 0.1sec with the number of samples as 10. (b)Find the 8-point DFT of x(n) = {1, 1, 0, 0, 1, 0, 1, 1}. Use the property of conjugate symmetry. (or) (c)Implement the decimation-in-frequency FFT algorithm of <i>N</i>-point DFT where N = 8. Also explain the steps involved in this algorithm. Draw the butterfly line diagram for 8-point FFT calculation and briefly explain. Use decimation-in-frequency algorithm. 	10+10	CO4
	property of conjugate symmetry.		
	(or)		
	1 1 0	10+10	CO4
	(d) Find the 4-point DFT of the sequence $x[n] = \{1, 2, 1, 3\}$ by (i) DIT FFT algorithm (ii) DIF FFT algorithm. Plot the magnitude and		
	phase for the same.		