Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022			
Course: Flight Mechanics I Program: B.Tech ASE/ASE+AVE Course Code: ASEG3001		Semester: V Time : 03 hrs. Max. Marks: 100	
Instructions: Assume any missing DATA appropriately.			
SECTION A 5Qx4M=20Marks			
S. No.		Marks	CO
Q 1	Differentiate between geopotential and geometric altitudes.	4	CO1
Q 2	How Induced Drag of aircraft can be minimized?	4	CO2
Q 3	An aircraft of mass 2500 kg in straight and level flight at a constant speed of $100 \mathrm{~m} / \mathrm{s}$ has available excess power of 1.0×10^{6} Watt, Calculate the steady rate of climb, it can attain at that speed.	4	CO3
Q 4	An aircraft is performing a coordinated turn at a bank angle of 30 deg and forward speed of $100 \mathrm{~m} / \mathrm{s}$. Assume $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Calculate load factor and turn radius of turn.	4	$\mathrm{CO4}$
Q 5	Compare effect of altitude on Power available and Power required vs velocity graphs in steady level flight for jet engine and propeller driven aircrafts.	4	CO5
$\begin{gathered} \text { SECTION B } \\ 4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks } \end{gathered}$			
Q1	Derive expressions for P, T and ρ in gradient layer of atmosphere.	10	CO1
Q2	The altimeter on a low-speed airplane reads 2 km . The airspeed indicator reads $50 \mathrm{~m} / \mathrm{s}$. If the outside air temperature is 280 K and pressure is 79480 Pa , what is the true velocity of the airplane?	10	CO2
Q3	Compare radius (R) and rate (ω) during pull-up with pull-down maneuvers for civil and military aircrafts.	10	$\mathrm{CO3}$
Q4	In steady level turning flight of an aircraft at a load factor n, show that the ratio of the horizontal component of lift and aircraft weight is given by $\sqrt{n^{2}-1}$	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { 2Qx20M=40 Marks } \\ \hline \end{gathered}$			
Q 1	Consider our executive jet, $\mathrm{W}=45000 \mathrm{~N}, \mathrm{~S}=20 \mathrm{~m}^{2}, \mathrm{~T}=9000 \mathrm{~N}$ and the parabolic drag polar is, $\mathrm{C}_{\mathrm{D}}=0.02+0.05 \mathrm{C}_{\mathrm{L}}{ }^{2}$ Calculate the max angle of climb, and the climb rate under that condition, and find the max rate of climb, and the angle of climb under that flight condition.	20	CO4

Q2	Derive Brequet Range and Endurance formula for Propeller driven aircraft. OR		
An airplane weighing 13250 N is powered by piston engine delivering 230 HP. Its SFC is $7.3 \times 10^{-7} \mathrm{~N} / \mathrm{w} . \mathrm{s}$. Other parameters are wing span 11 m, wing area $16 \mathrm{~m}^{2} \mathrm{C}_{\mathrm{D} 0}=0.025, \mathrm{e}=0.8$, prof eff. 0.85. Determine the fuel required to fly non-stop over a distance of 1850 km.	$\mathbf{2 0}$	$\mathbf{C O 5}$	

