Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Flight Mechanics I

Program: B.Tech ASE/ASE+AVE

Course Code: ASEG3001

Semester: V

Time: 03 hrs.

Max. Marks: 100

Instructions: Assume any missing DATA appropriately.

	SECTION A 5Qx4M=20Marks		
S. No.		Marks	СО
Q 1	Differentiate between geopotential and geometric altitudes.	4	CO1
Q 2	How Induced Drag of aircraft can be minimized?	4	CO2
Q 3	An aircraft of mass 2500 kg in straight and level flight at a constant speed of 100 m/s has available excess power of 1.0x10 ⁶ Watt, Calculate the steady rate of climb, it can attain at that speed.	4	СО3
Q 4	An aircraft is performing a coordinated turn at a bank angle of 30 deg and forward speed of 100 m/s. Assume g=9.81 m/s ² . Calculate <i>load factor</i> and <i>turn radius</i> of turn.	4	CO4
Q 5	Compare effect of altitude on Power available and Power required vs velocity graphs in steady level flight for <i>jet engine</i> and <i>propeller driven</i> aircrafts.	4	CO5
	SECTION B 4Qx10M= 40 Marks		_
Q1	Derive expressions for P, T and ρ in gradient layer of atmosphere.	10	CO1
Q2	The altimeter on a low-speed airplane reads 2 km. The airspeed indicator reads 50 m/s. If the outside air temperature is 280 K and pressure is 79480 Pa, what is the true velocity of the airplane?	10	CO2
Q3	Compare <i>radius</i> (R) and <i>rate</i> (ω) during pull-up with pull-down maneuvers for civil and military aircrafts.	10	СОЗ
Q4	In steady level turning flight of an aircraft at a load factor n, show that the ratio of the horizontal component of lift and aircraft weight is given by $\sqrt{n^2-1}$	10	CO4
	SECTION-C 2Qx20M=40 Marks		
Q 1	Consider our executive jet, $W = 45000 \text{ N}$, $S = 20 \text{ m}^2$, $T = 9000 \text{ N}$ and the parabolic drag polar is, $C_D = 0.02 + 0.05 \text{ C}_L^2$ Calculate the max angle of climb, and the climb rate under that condition, and find the max rate of climb, and the angle of climb under that flight condition.	20	CO4

OR An airplane weighing 13250 N is powered by piston engine delivering 230 HP. Its SFC is 7.3 x10 ⁻⁷ N/w.s. Other parameters are wing span 11m, wing area 16 m ² C _{D0} =0.025, e=0.8, prof eff. 0.85. Determine the fuel required to	Q2	Derive Brequet Range and Endurance formula for Propeller driven aircraft.			
fly non-stop over a distance of 1850 km.		OR An airplane weighing 13250 N is powered by piston engine delivering 230 HP. Its SFC is 7.3 x10 ⁻⁷ N/w.s. Other parameters are wing span 11m, wing	20	CO5	