| N | ame: | |----|------| | 17 | ame. | **Enrolment No:** Semester : V : 03 hrs. Time ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2022** **Course: Petroleum Production System Design (Prog Ele 1)** Program: B.Tech. APE Upstream Course Code: CHCE3008P Max. Marks: 100 No of pages: 04 Instructions: Assume suitable data, if necessary. | SECTION A | | |--------------------------|--| | (5Qx4M=20Marks) | | | S. No. | Short answer type questions. | Marks | CO | |--------|---|-------|-----| | Q1 | Recall and write any four objectives of well testing. | 4 | CO1 | | Q 2 | Define and explain the term 'Inflow-Performance Relationship (IPR)'. | 4 | CO2 | | Q 3 | Illustrate horizontal well drainage area. (Only a schematic diagram is expected.) | 4 | CO3 | | Q 4 | Remember and write when artificial lift is needed in oil wells. | 4 | CO4 | | Q 5 | Analyze and list any four consequences of sand production. | 4 | CO5 | ## **SECTION B** (4Qx10M= 40 Marks) | (4QXIOM=40 Marks) | | | | |-------------------|---|-------|-----| | S. No. | Medium answer type questions. | Marks | CO | | Q 6 | A well producing from a saturated reservoir with an average reservoir pressure, \overline{p}_r of 2500 psig. Stabilized production test data indicated that the stabilized rate, Q_o and wellbore pressure, p_{wf} are 350 STB/day and 2000 psig respectively. Construct IPR using p_{wf} as 2500, 2200, 1500, 1000, 500, 0 psig. Plot p_{wf} vs Q_o using a simple graph paper. Hint: Use a constant productivity index approach. | 10 | CO2 | | Q 7 | In order to lift an oil from a well using Gas-lift technique, a gas is injected at a rate of 1.2 X 10^5 SCF/d. The gas-lift compressor inlet pressure, P_{in} is 100 psi while the surface pressure, P_{surf} is 1330 psi. Estimate the power required by the compressor in hydraulic horse power (hhp) unit. Following equation may be used: $\mathbf{P} = 2.23 \times 10^{-4} q_g \left[\left(\frac{p_{\text{surf}}}{p_{\text{in}}} \right)^{0.2} - 1 \right]$ Where, $P = P$ ower required in hhp | 10 | CO4 | | | $q_g = Gas injection rate in SCF/d$ | | | |-----|---|----|-----| | | $P_{surf} = surface pressure in psi$ | | | | | $P_{in} = compressor inlet pressure$ | | | | | Estimate the manual manifest is surface masses, and uses by 500/ while the ass | | | | | Estimate the power required if the surface pressure reduces by 50% while the gas | | | | | injection rate increased by 100%. Rest is unchanged. | | | | Q 8 | Discuss sand production control using gravel pack completions. (Diagram is not expected.) | 10 | CO5 | | Q 9 | Identify and discuss the applications of smart wells. | | | | | OR | 10 | CO6 | | | Identify and describe the main components of smart wells. | | | ## SECTION-C (2Qx20M=40 Marks) | S. No. | Long answer type questions. | Marks | СО | |--------|--|-------|-----| | Q 10 | Illustrate with diagrams, gas-liquid flow regimes at high flow rate of continuous phase in vertical pipes. (Both description and diagram are expected). OR Illustrate with diagrams, gas-liquid flow patterns in horizontal pipes. (Both description and diagram are expected). | 20 | CO3 | | Q 11 | a) Calculate the solution gas to oil ratio (R _s) at the pump inlet under these conditions. Bubble point pressure (P _b) = 147 bar, Specific gravity of gas (Y _g) = 0.75, Temperature at the pump inlet (T) = 260 °C, API gravity of oil(°API) = 40. Following equation may be used: $R_s = 0.342 Y_g \times \left[\frac{P_b}{10^{0.009} \text{I} \times (1.8T + 32)} \times 10^{0.0125 \times ^{\circ}} \text{API} \right]^{1.2048}$ | 10 | CO4 | | b) An oil well is in a reservoir where height/depth (H) is 8000 ft and GLR is 200 SCF/STB. Find out the working GLR using pressure gradient curves generated with the modified Hagedorn and Brown correlation (Fig. 1). Indicated bottomhole pressure is 1500 psi. Calculate the volumetric flow rate of gas in SCF/d to be injected at the bottom of the well. Use following equation. $q_l(\text{GLR}_2 - \text{GLR}_1) = q_g$ | 10 | CO4 | |--|----|-----| | Where, q_l = volumetric flow rate of liquid (oil & water) in STB/d | | | | q_g = volumetric flow rate of injection gas in SCF/d | | | | GLR_1 = Natural, gas to liquid ratio | | | | GLR ₂ = Working, gas to liquid ratio | | | | The volumetric flow rate of liquid is 800 STB/d. Other data given below. | | | | • Condition of liquid: 50% Oil & 50% water | | | | • Tubing size: 2.5 in ID | | | | Production rate: 800 bbl/d | | | | Average flowing temperature: 140 °F | | |