Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Programme Name:B.Tech. (APEG)Semester: VCourse Name: Production Engineering ITime: 3 Hrs.Course Code: PEAU3001Max. Marks : 100

Nos. of page(s) : 2

Instructions:

All questions are compulsory.
 Assume any missing data, if any

S. No.	Section - A (Attempt all questions) (5Qx4M=20Marks)			Marks	CO	
Q1	List the different functions of a casing head			4	CO1	
Q2	Illustrate the charac	cteristics of the	e T-Cap on a Christmas tre	e	4	CO1
Q3	Identify the various valves utilized in the production flow system			4	CO1	
Q4	What are the poten	tial causes of s	and production?		4	CO3
Q5	Clarify the meaning of "conformance control" in the context of an oil reservoir			4	CO3	
	Section - B (Attempt all questions) (4Qx10M=40Marks)					
Q6	Draw a schematic depicting the flow lines, production manifold, and header			10	CO1	
Q7	With help of schematic representation, explain the mechanism of jet perforation technique			10	CO2	
Q8	Describe the necessary steps for an effective hydraulic fracturing design job			10	CO2	
Q9	A 25-wt% HCl is needed to propagate wormholes 4 feet from a 0.320-feet radius wellbore in a limestone formation (specific gravity 2.71) with a porosity of 0.2. The designed injection rate is 0.1 bbl/min-ft, the diffusion coefficient is 10 ⁻⁹ m ² /sec, and the density of the 25 % HCl is 1.10 g/cm ³ . In linear core floods, 1.5-pore volume is needed for wormhole breakthrough at the end of the core. Calculate the acid volume requirement in gal/ft, using volumetric model			10	CO2	
	Section - C (Attempt all questions)					
	(2Qx20M=40Marks)					
Q10	b) The following a	-	ines for effective sand man of a sieve analysis, Mass of sand retained on each sieve (gm)	nagement	10+10	CO3
		4	0			

		10	20.1			
		20	40.2			
		40	100.4			
		60	89.1			
		100	95.3			
		200	59.3			
		Pan	30.5			
	I. Plot the grain-size distribution curve. Refer to Table 1 at the end of					
	the question paper for US sieve sizes					
	II. Calculate the uniformity coefficient (C)					
	a) What problems can be encountered during well production? Describe					
011	the preventative steps to be taken to avoid them				10.10	CO4
Q11	b) How the skin factor and flow efficiency provide insight into the				10+10	
	formation c	lamage?				

Table 1: U.S. Sieve Size

Sieve Number	Opening (mm)
4	4.76
5	4
6	3.36
7	2.83
8	2.38
10	2
12	1.68
14	1.41
16	1.19
18	1
20	0.84
25	0.71
30	0.59
35	0.5
40	0.42
45	0.345
50	0.3
60	0.25
70	0.21
80	0.177
100	0.149
120	0.125
140	0.105
170	0.088
200	0.074
230	0.062
270	0.053
325	0.044