Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Term Examination – December 2022

SECTION A (4x5=20)

Program: B.Tech APE (Gas) Course: Pipeline Transportation of Oil & Gas Code: CHGS 3002 Max Marks :100 Assume data if necessary

Semester: V Time: 03 hrs.

S. No.	Short Notes					
1	Write short notes on 'sectionalizing Valve'.	4	CO1			
2	What is Trenching in pipeline laying?					
3	Explain the function of 'RTU' in SCADA.	4	CO5			
4	Compare centrifugal & reciprocating pump.	4	CO3			
5	 Three liquids A, B, and C are blended together in the volumetric ratio of 20%, 20%, and 60% respectively. Determine the specific gravity of the blended liquid if the individual liquids have the following specific gravities at 70°F: Specific gravity of liquid A: 0.815 Specific gravity of liquid B: 0.850 Specific gravity of liquid C: 0.895. 	4	CO1			
	SECTION B (10x4=40)					
6	Define corrosion? Evaluate corrosion prevention methods in brief.	10	COS			
7	Describe pigging stations used in pipeline	10	CO4			
8	Elaborate the term SCADA? Explain the instrumentation used in SCADA system.	10	CO5			
9	A steel pipeline of 500 mm outside diameter, 10 mm wall thickness is used to transport heavy crude oil at a flow rate of 750 m3/hr at 100°C. Using the MIT equation determine the pressure drop per kilometer of pipe assuming an internal pipe roughness of 0.05 mm. The heavy crude oil has a specific gravity of 0.89 at 100°C and a viscosity of 120 cSt at 100°C.	10	CO2			
	SECTION-C (20x2=40)					

10	A	<u></u>	· 1 1 6	Descrite Les	1	1 - ENDS 16 0 250		
10			-			d of NPS 16, 0.250		
						ty and viscosity are		
		· 1		Ŭ		be 700µin. and the		
	base pressure and base temperature are 14.7 psia and 60°F, respectively. The gas flow rate is					5		
	175 MMSCFE	D at 80°F, and t	the delivery p	ressure required	at Leeds is 800	psig.		
	a) Calculate th	e pressure req	uired at inlet t	to deliver the ga	s at Leeds?			
	b) Can the gas	s be delivered	at the calcula	ted inlet pressu	re from Dover?	If not, mention the	:	
	reasons.							
	c) Assuming it	f only one inte	ermediate con	pressor is insta	lled at mid-poin	nt of the pipeline at	-	
	Kent, will it be able to deliver the gas at Leeds at delivery pressure. Mention reasons							
	d) If not calcul	ate the exact lo	ocation of com	pressor. Also fo	or this location, c	calculate the suction	L	
	pressure and co	ompression rat	io at Kent.					
	Assume $Z=0.8$	85					20	CO3
	or							
	i) Describe pu	ump performa	ance curves i	n detail			10	CO3
	ii) The head and efficiency versus capacity data for a centrifugal pump with a							0.00
		ler is as show				1	,	
	Q, gal/min H. ft	0 3185	800	1600 2900	2400	<u>3000</u> 1800		
	· ·					of 3500 RPM.]	
	· · ·	•			n. impeller, us			
	Laws.							
		1	e	-	•	(FD) motor with		
	a speed range of 3000 to 4000 RPM, calculate the new H-Q values for the maximum speed of 4000 RPM with the original 10 in. impeller.						10	CO3
	speed of 4000	J KPIVI WILII L	ne originar i	o m. mpener.			20	CO4
11	Illustrate 'Preliminary Route selection' & 'Detailed survey of route selection' in							
	detail.	5			5			
	Equations are	e as follows						
	i) Centistokes							
			195					
	$Centistokes = 0.226(SSU) - \frac{195}{SSU}$							
	ii) General Flo		~~~~					
	1	-						

$Q = 77.54 \left(\frac{T_b}{P_b}\right) \left(\frac{P_1^2 - P_2^2}{GT_f LZ_f}\right)^{0.5} D^{2.5} (\text{USCS units})$	
iii) Colebrook Equation	
$F=-4 \text{ Log}_{10}[(e/3.7D)+1.255(F/R)]$	
for turbulent flow R>4000	
R=92.24 Q/(v D)	
MIT Equation	
$Pm=0.2421(Q/F)^{2}(Sg/D^{5})$	