

	OR Show that the transformation $\mathrm{Q}=\frac{1}{p}$ and $P=q p^{2}$ is canonical		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	[a] Explain the space and time like in four-vectors. [b] The rest mass of a proton is $1.6725 \times 10^{-27} \mathrm{~kg}$. Find its mass and momentum, when it is with $2.7 \times 10^{8} \mathrm{~m} / \mathrm{s}$ velocity. If it is collides with a stationary nucleus of mass $2.7 \times 10^{26} \mathrm{~kg}$ and coalesces, find the velocity of the combined particle. OR [a] Explain the space and time like intervals with its conditions. [b] What is the Doppler effect? Derive an expression for the relativistic longitudinal Doppler effect.	20	CO 2
Q. 11	In frame S, two events have the space-time coordinates $(0,0,0,0)$ and $(5 c$, $0,0,4)$, where time coordinates in seconds. Calculate the space-time interval between them. Also calculate the velocity of a frame in which the first event occurs 1 sec earlier than the second.	20	CO4

