

\begin{tabular}{|c|c|c|c|}
\hline Q8. \& \begin{tabular}{l}
Write short note on \\
(a) LS coupling \\
OR \\
(b) Paschen Back effect
\end{tabular} \& 10 \& CO 2 \\
\hline Q9. \& For a given wavefunction, \(\Phi=A e^{2 i \varphi}\), where \(\mathrm{A}=\) constant, Calculate Eigen value of \(L_{z}\) operator. \& 10 \& CO 3 \\
\hline \multicolumn{4}{|c|}{SECTION-C} \\
\hline Q10. \& \begin{tabular}{l}
(a) What is spin-orbit interaction? Find the relation between \(\mathbf{B}\) (magnetic field) and \(\mathbf{L}\) (orbital angular momentum). \\
(b) Discuss Stern-Gerlach experiment for space quantization.
\end{tabular} \& \begin{tabular}{l}
\[
10
\] \\
10
\end{tabular} \& \[
\mathrm{CO}
\]
CO3 \\
\hline Q11. \& \begin{tabular}{l}
(a) Sketch Zeeman transition levels neatly for the atomic transition, \(3 \mathrm{~d} \rightarrow 2 \mathrm{p}\). \\
(b) What is space quantization? Calculate total angular momentum J and total magnetic moment \(\mu_{\mathrm{J}}\) for the state, \({ }^{2} \boldsymbol{P}_{3 / 2}\) \\
OR \\
(a) Solve Schrodinger equation in spherical polar co-ordinates for radial part to obtain energy Eigen value of hydrogen atom of the form,
\[
E_{n}=-\frac{m e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2} n^{2}}
\] \\
(b) Find average radius \((<r>)\) the ground state of hydrogen atom, \(\psi_{100}(r)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}\)
\end{tabular} \& 10
10

10

10 \& | CO4 |
| :--- |
| CO4 |
| CO4 |
| CO4 | \\

\hline
\end{tabular}

Physical constants: $h=6.63 \times 10^{-34} J-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, a_{0}=$ Bohr radius $=0.53 \AA, \mu_{0}=4 \pi \times$ $10^{-7} \mathrm{H} / \mathrm{m}, \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, mass of proton $=1.6726 \times 10^{-27} \mathrm{Kg}$, mass of electron $=9.1 \times 10^{-31} \mathrm{Kg}$

