Name: Enrolment No:					YUPĒS				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Mathematical Modeling and Graph Theory Program: B.Sc H Mathematics Course Code: MATH3024D Instructions: All questions are compulsory. Q9 and Q11 have internal choice.									
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$									
S. No.								Marks	CO
Q1	Show that $(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)$.							4	CO1
Q2	Evaluate the following transforms. (a) $L\left(\frac{1}{\sqrt{t}}+t^{\frac{3}{2}}\right)$ (b) $L\left(e^{-2 t}(t \sin 3 t)\right)$ Write a short notes on the linear congruence method for generating pseudo random numbers. Generate 15 random numbers using $a=1, b=7$ and $c=10$ in the formula of the linear congruence method. Was there cycling? If so, when did it occur?							4	$\mathrm{CO2}$
Q3								4	CO3
Q4	Write a short notes on the sensitivity analysis.							4	CO5
Q5	Define the 'degree sequence' of a graph. Does there exists a simple graph with 7 vertices having degree sequence ($1,3,3,4,5,6,6$)? Justify your answer with a proper reasoning.							4	CO6
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$									
Q6	State and prove the Convolution theorem.							10	CO2
Q7	Find the inverse Laplace transform of $\emptyset(s)=\left(\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}\right)$							10	CO2
Q8	Sunrise Bakery keeps stock of popular brand of cake. Previous experience indicates the daily demand as given below Using the sequence of random numbers: $48,78,19,51,56,77,15,14,68$ and 09 , simulate the demand for the next 10 days. Find out the stock situation if the owner of the bakery decides to make 30 cakes every day. Also, estimate the average daily demand for the cakes on the basis of the simulated data.							10	CO 3

Q9	Solve the following LPP using the simplex method. $\begin{aligned} & \text { Maximize } z=4 x+6 y \\ & \text { Subject to } 2 x+3 y \leq 6 \\ & \\ & \text { and } \quad x-y \leq 1 \\ & x, y \geq 0 \end{aligned}$ (OR) Solve the following LPP Using the Graphical method. $\begin{array}{\|l} \text { Min } Z=10 x+5 y \\ \text { Subject to } 0.5 x+y \leq 20 \\ \\ \\ \\ \\ \\ 2 x+5 x+0.5 y \geq 15 \\ \text { and } \quad x, y \geq 0 \end{array}$	10	$\mathrm{CO4}$
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q10	Apply Dijkstra's algorithm on the following graph to find the shortest distance from source vertex \boldsymbol{a} to remaining vertices of the graph. Also, find the shortest path from ' \boldsymbol{a} to \boldsymbol{f} ' using the backward technique.	20	CO6
Q11	Using Frobenius method, solve in series the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-4\right) y=0$ (OR) Find the series solution of $n^{t h}$ order Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$. Also obtain the Bessel's functions $J_{n}(x)$ and $J_{-n}(x)$ and the complete solution in terms of Bessel's functions.	20	$\mathrm{CO1}$

