Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program: B. Sc.(H) Mathematics

Course: Numerical Methods

Max. Marks: 100

Instructions:

Semester-V

Course Code: MATH-3021

Time: 03 Hours

- 1. Section A has 5 questions. All questions are compulsory.
- Section B has 4 questions. All questions are compulsory. Question 9 has internal choice to attempt any one.
 Section C has 2 questions. All questions are compulsory. Question 11 has internal choice to attempt any one.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Using Newton Raphson method, find the real root of the equation $3x - \log_{10} x = 6$ correct to four significant figures.	4	CO1
Q 2	Prove the following relation where the operators have their usual meanings: $\delta\mu = \frac{1}{2}\Delta E^{-1} + \frac{1}{2}\Delta$	4	CO2
Q 3	Evaluate $\int_0^6 \frac{e^x}{1+x} dx$ using Simpson's $1/3^{rd}$ rule with 6 subintervals.	4	CO3
Q 4	Perform one iteration of Gauss Seidal method taking zero solution to be the initial approximation to solve: $ 27x + 6y - z = 85 $ $ x + y + 54z = 110 $ $ 6x + 15y + 2z = 72 $	4	CO4
Q 5	Using Runge-Kutta method of fourth order, solve for $y(0.1)$ taking $h = 0.1$ given that $\frac{dy}{dx} = xy + y^2$, $y(0) = 1$.	4	CO5
	SECTION B (4Qx10M= 40 Marks)		
Q 6	If $u = \frac{4x^2y^3}{z^4}$ and errors in x , y , z be 0.001, compute the relative maximum error in u when $x = y = z = 1$.	10	CO1
Q 7	Apply Gauss-Jordan method to solve the equations: 10x + y + z = 12 $ 2x + 10y + z = 13 $ $ x + y + 5z = 7$	10	CO4

Q 8	The table gives the distances in nautical miles of the visible horizon for the given heights							
	in feet above the earth's surface :							
	Height (x) 100 15	200	250	300	350	400	10	G 6
	Distance (y) 10.63 13.0	15.04	16.81	18.42	19.90	21.27	10	CO2
	Find the value of y when $x = 375$ ft							
Q 9	A train is moving at the speed of 30 m / sec. Suddenly brakes are applied. The							
	speed of the train per second after t seconds is given by							
	Time (t) 0 5	10 15 3	$20 \mid 25 \mid 3$	0 35	40 45			
	Speed (v) 30 24	19 16	13 11 1	0 8	7 5			
	Apply Simpson's three-eight rule to determine the distance moved by train in 45 seconds.						10	CO3
	OR A rod is rotating in a plane. The following table gives the angle θ (radians) throug which the rod has turned for various values of the time t (seconds).							
	t: 0 0.2 θ: 0 0.1	0.4 0.6 2 0.49 1.3			1.2			
	Calculate the angular velocity and acceleration of the rod when $t = 0.2$ sec.							
	<u> </u>		TION-C I=40 Mark	κs)				
Q 10	Given that $\frac{dy}{dx} = \log_{10}(x+y)$ w	ith the initia	al condition	n y = 1	when x	= 0. Find <i>y</i>	20	CO5
	for $x = 0.2$ and $x = 0.5$ using modified Euler's method.							
Q 11	Show that the nth divided differences $[x_0, x_1,, x_n]$ for $u_x = \frac{1}{x}$ is $\left[\frac{(-1)^n}{x_0, x_1,, x_n}\right]$. OR A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"X10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in the following table:							
								CO2
	x(in.) 2.00 $y(in.)$ 7.2	4.25 5.25 7.1 6.0		20 10.6				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					l.		