

Q 8	The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface :											10	CO2
	Height (x)	100	150		200		250				400		
	Distance (y)	10.63	13.03				16.81				21.27		
	Find the value of y when $x=375 \mathrm{ft}$.												
Q 9	A train is moving at the speed of $30 \mathrm{~m} / \mathrm{sec}$. Suddenly brakes are applied. The speed of the train per second after t seconds is given by Apply Simpson's three-eight rule to determine the distance moved by train in 45 seconds. OR A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time t (seconds). Calculate the angular velocity and acceleration of the rod when $t=0.2 \mathrm{sec}$.											10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$													
Q 10	Given that $\frac{d y}{d x}=\log _{10}(x+y)$ with the initial condition $y=1$ when $x=0$. Find y for $x=0.2$ and $x=0.5$ using modified Euler's method.											20	$\mathrm{CO5}$
Q 11	Show that the nth divided differences $\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ for $u_{x}=\frac{1}{x}$ is $\left[\frac{(-1)^{n}}{x_{0}, x_{1}, \ldots, x_{n}}\right]$. OR A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15 "X10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in the following table: Find the path traversed through the six points using Lagrange's method.											20	CO 2

