Name: Enrolment No:			
Course: Mathematics III Program: B. Tech (Civil Engineering) Course Code: MATH2045 Instructions: All questions are compulsory.		Semester: III Time : 03 hrs . Max. Marks: 100	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Find the Laplace transform of $f(t)=\left\{\begin{array}{cc} t, & 0<t<\frac{1}{2} \\ t-1, & \frac{1}{2}<t<1 \\ 0, & t>1 \end{array}\right.$	4	CO1
Q 2	If $F(s)=\frac{1}{s^{2}(s+5)}$ find the Inverse Laplace transform.	4	CO1
Q3	Determine a truth table of $\neg p \rightarrow(q \rightarrow p)$	4	CO2
Q4	Determine whether the relation whose digraph is given below is a poset	4	$\mathrm{CO3}$
Q5	Solve the recurrence relation $a_{r}-7 a_{r-1}+10 a_{r-2}=0$ for $r \geq 2$ by method of generating functions.	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	Prove the following logical equivalencies: (a) $p \vee[p \wedge(p \vee q)] \equiv p$ (b) $[(\neg p \vee q) \wedge(p \wedge(p \wedge q))] \equiv p \wedge q$	10	CO 2
Q7	Draw the Hasse diagram representing the positive divisions of 36 OR If $A=\{3,4,12,24,48,72\}$ and the relation \leq be such that $a \leq b$ if a divides b. Draw the Hasse diagram of (A, \leq).	10	$\mathrm{CO3}$

Q8	Show that if x and y are elements of a lattice L then $x \vee y=y$ if and only if $x \wedge y=x$.	10	CO 3
Q9	Consider a second-order homogeneous recurrence relation $a_{n}=a_{n-1}+2 a_{n-2}$ with initial conditions $a_{0}=2, a_{1}=7$, (a) Find the next three term of the sequence. (b) Find the general solution. (c) Find the unique solution with the given initial conditions.	10	CO 4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10A	Evaluate $L\{f(t)\}$ and $L\left\{f^{\prime}(t)\right\}$ of $\begin{aligned} f(t)= & \left\{\begin{array}{cr} t, & 0 \leq t<3 \\ 6, & t>3 \\ \text { OR } \end{array}\right. \end{aligned}$ Find the z-transform of the $f(k)=\sin \alpha k, k \geq 0$.	10	CO1
Q10B	Solve the differential equation $\frac{d^{2} y}{d t^{2}}+9 y=\cos 2 t, y(0)=1, y\left(\frac{\pi}{2}\right)=-1$ OR Find the inverse \boldsymbol{z}-transform of $\frac{\boldsymbol{z}}{\boldsymbol{z}-\boldsymbol{a}}$ when (a) $\|z\|>\|a\|$ (b) $\|z\|<\|a\|$.	10	CO1
Q11A	Prove that if (A, \leq) and (B, \leq) are partially order sets, then $(A \times B, \leq)$ is a partially ordered set with partial order \leq, defined by $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ if $a \leq a^{\prime}$ in A and $b \leq b^{\prime}$ in B.	10	CO 3
Q11B	Consider the poset $A=\{1,2,3,4,5,6,7,8\}$ whose Hasse diagram is shown in the following Figure and let $B=\{3,4,5,6\}$. Find (a) Upper bounds of B, (b) Lower bounds of B, (c) Greatest lower bound of B, (d) Least upper bound of B.	10	CO 3

