

Q 10	Determine solar Time (ST) corresponding to 12:00 noon Indian Standard time (IST) (Longitude $\mathbf{8 1}^{\circ} \mathbf{5 4}{ }^{\prime}$ E) on May 8, 1995 for New Delhi. (For required data, see appendix). Or, Estimate the monthly average daily global radiation on the horizontal surface at Nagpur ($21.06 \mathrm{~N}, 79.03 \mathrm{E}$) during the month of March if the average sunshine hours per day is 9.2 . Assume $a=0.27 \& b=0.50$	20	CO5
Q 11	A. Calculate the Declination angle, local apparent time and hour angle for the collector located in Bombay, which is tilted at an angle of 30° with the horizontal and is pointing due south on October 1. B. What will be the angle of incidence in Mumbai in the afternoon (LAT) on 1 November on horizontal plane?	10+10	CO5

Appendix

Table-1: Latitude, Longitude and elevation for different places in India

Place	Latitude (ϕ)	Longitude ($L_{\text {loc }}$)	Elevation (E_{o})
Bangalore	$12^{\circ} 58^{\prime} \mathrm{N}$	$77^{\circ} 35^{\prime} \mathrm{E}$	921 m above msl
Bombay	$18^{\circ} 54^{\prime} \mathrm{N}$	$72^{\circ} 49^{\prime} \mathrm{E}$	11 m above msl
Jodhpur	$26^{\circ} 18^{\prime} \mathrm{N}$	$73^{\circ} 01^{\prime} \mathrm{E}$	224 m above msl
Mount Abu	$24^{\circ} 36^{\prime} \mathrm{N}$	$72^{\circ} 43^{\prime} \mathrm{N}$	1195 m above msl
New Delhi	$28^{\circ} 35^{\prime} \mathrm{N}$	$77^{\circ} 12^{\prime} \mathrm{E}$	216 m above msl
Simla	$31^{\circ} 06^{\prime} \mathrm{N}$	$77^{\circ} 10^{\prime} \mathrm{E}$	2202 m above msl
Srinagar	$34^{\circ} 05^{\prime} \mathrm{N}$	$74^{\circ} 50^{\prime} \mathrm{E}$	1586 m above msl
Calcutta	$22^{\circ} 32^{\prime} \mathrm{N}$	$88^{\circ} 20^{\prime} \mathrm{E}$	6 m above msl

Table-2: The Sun's equation of Time $€$ (Minutes: second)

Month	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{1 5}$	$\mathbf{2 2}$
Jan	$-(3: 16)$	$-(6: 26)$	$-(9: 12)$	$-(11: 27)$
Feb	$-(13: 34)$	$-(14: 14)$	$-(14: 15)$	$-(13: 41)$
March	$-(13: 36)$	$-(11: 04)$	$-(9: 14)$	$-(7: 12)$
April	$-(4: 11)$	$-(2: 07)$	$-(0: 15)$	$(1: 19)$

May	$2: 50$	$3: 31$	$3: 44$	$3: 30$
June	$2: 25$	$1: 15$	$-(0: 09)$	$-(1: 40)$
July	$-(3: 33)$	$-(4: 48)$	$-(5: 45)$	$-(6: 19)$
August	$-(6: 17)$	$-(5: 40)$	$-(4: 35)$	$-(3: 04)$
Sept	$-(0: 15)$	$2: 03$	$4: 29$	$6: 58$
October	$10: 02$	$12: 11$	$13: 59$	$15: 20$
November	$16: 20$	$16: 16$	$15: 29$	$14: 02$
December	$11: 14$	$8: 26$	$5: 13$	$1: 47$

Table-3: The value of hour angle with time of the day (for Northern hemisphere)

Time of the day (Hours)	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
Hour angle (degree)	-90	-75	-60	-45	-30	-15	0	+15	+30	+45	+60	+75	+90

