Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Electrical Power System-I Program: B.Tech (RSEE) Course Code: EPEG2018 Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: Read the instructions provided for every question properly before attempting the answer. Use of calculator is permitted.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Briefly describe the major components of the power system.	4	CO1
Q 2	Determine the critical disruptive voltage and corona loss for a 3-phase line operating at 110 kV which has conductor of 1.25 cm dia arranged in a 3.05 metre delta. Assume air density factor of 1.07 and the dielectric strength of air to be 21 kV/cm .	4	CO2
Q 3	What is corona loss in transmission system?	4	CO4
Q 4	Explain with a suitable graph the behavior of cost versus transmission distance for both ac and dc type system.	4	CO1
Q 5	A conductor consists of seven identical strands each having a radius of r. Determine the factor by which r should be multiplied to find the self GMD of the conductor. 1 2 3 6 5 4	4	CO5
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Determine the voltage at the generating station and the efficiency of transmission for the following 1-phase system: 250 kVA, 2kV, 0.8 p.f.	10	CO5
	Transformer ratio 2 kV/11 kV. The resistance on l.v. side = 0.04 ohm and h.v. side 1.3 ohm. Reactance on l.v. and h.v. side is 0.125 ohm and 4.5 ohm.		

Q 7	A 400 V, 3-phase 4-wire service mains supplies a star connected load. The resistance of each line is 0.1 ohm and that of neutral 0.2 ohm. The load impedances are $Z_R = (6 + j9)$, $Z_Y = 8$ ohms and $Z_B = (6 - j8)$. Calculate the voltage across each load impedance and current in the neutral. Phase sequence RYB.	10	CO3
Q 8	Define Ferranti effect. Describe in detail the explanation of Ferranti- effect by considering lumped impedance and net reactive power flow on the line.	10	C01
Q 9	Prove that the relation between the parameters of a two-terminal pair network is AD-BC = 1. OR Derive the expression of total flux linkage due to current flowing in a 1- phase two-wire transmission line.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) The line-to-ground voltages on the high voltage side of a step-up transformer are 100 kV, 33 kV and 38 kV on phases a, b and c respectively. The voltage of phase a leads that of phase b by 100° and lags that of phase c by 176.5°. Determine analytically the symmetrical components of voltage. (b) The line currents in amperes in phases a, b and c respectively are 500 + j150, 100 - j600 and - 300 + j600 referred to the same reference vector. Find the symmetrical component of currents. 	10+10	CO4
Q 11	Determine the efficiency and regulation of a 3-phase, 100 km, 50 Hz transmission line delivering 20 MW at a p.f. of 0.8 lagging and 66 kV to a balanced load. The conductors are of copper, each having resistance 0.1 ohm per km, 1.5 cm outside dia, spaced equilaterally 2 metres between centres. Neglect leakance and use (i) nominal-T, and (ii) nominal- π method. Derive the expression of % regulation and efficiency for a medium transmission line for both nominal-T and nominal- π configurations.	20	CO3