Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Performance Analysis of Thermal Equipment Program: B Tech (RSEE) Course Code: EPEG 2017

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	What is a heat exchanger? Describe co-current, counter current and cross flow heat exchangers.	4	CO1
Q 2	Explain major modes of heat transfer in a boiler, furnace and a heat exchanger system.	4	CO1
Q 3	Find out the boiler efficiency and evaporation ration by direct method from the data given below. Type of boiler: Coal fired Quantity of steam (dry) generated: 8 TPH Steam pressure (gauge) / temp: 10 kg/cm ² (g)/ 180°C Quantity of coal consumed: 1.8 TPH Feed water temperature: 85°C GCV of coal: 3200 kCal/kg Enthalpy of steam at 10 kg/cm ² pressure: 665 kCal/kg (saturated) Enthalpy of feed water: 85 kCal/kg	4	CO2
Q 4	When it is beneficial to apply logarithmic mean temperature difference (LMTD) and when it is convenient to use effectiveness-NTU methods in the analysis of a heat exchanger.	4	CO1
Q 5	Describe the fluidization process in FBC boilers and their three main advantages over conventional firing boilers.	4	CO2
	SECTION B		
Q 6	(4Qx10M= 40 Marks)		
	Explain the features of a good steam distribution system.	10	CO2
Q 7	Explain the purpose of performance test of boilers. Define boiler efficiency and evaporation ratio and factors affecting these parameters during operations. Provide a detailed explanation of methods to evaluate boiler's efficiency with their merits and demerits.	10	CO2

a a			
Q 8	Calculate the amount of heat required to convert 5.00 kg of ice at -10°C to steam at 100°C at atmospheric pressure. Given that: The specific heat capacity of ice = 2.10 kJ/(kg K) Latent heat of fusion of ice = 336 kJ/kg The specific heat capacity of water = 4.20 kJ/(kg K) Latent heat of vaporization of water = 2250 kJ/kg OR Superheated steam at an average temperature 200°C is transported through a steel pipe ($k = 50$ W/m·K, $D_0 = 8.0$ cm, $D_i = 6.0$ cm, and $L =$ 20.0 m). The pipe is insulated with a 4-cm thick layer of gypsum plaster ($k = 0.5$ W/m·K). The insulated pipe is placed horizontally inside a warehouse where the average air temperature is 10°C. The steam and the air heat transfer coefficients are estimated to be 800 and 200 W/m ² ·K, respectively. Draw equivalent thermal resistance diagram and calculate the daily rate of heat transfer from the superheated steam to the room.	10	CO3
Q 9	List major sources of heat loss and fuel economy/energy efficiency measures for an industrial furnace. (5 Marks) Find out the efficiency of reheating furnaces by direct method from the following data: Dimension of hearth of reheating furnace = $2m \times 4m$ Rate of heating of stock = 125 kg/m^2 /hr. Temperature of heated stock = 1030° C Ambient air temperature = 30° C Calorific value of fuel oil = 10200 kCal/kg Specific gravity of fuel oil = 95 Fuel consumption during 8 hrs. of shift = 1980 liters . Mean specific heat of stock = 0.6 kCal/kg/K (5 Marks)	10	CO3
	SECTION-C		
Q 10	(2Qx20M=40 Marks) Describe various sources of waste heat, benefits of waste heat recovery, technologies available to recover waste heat and the end use of recovered heat. (10 Marks) Explain Cogeneration and Trigeneration systems and their benefits over conventional power plants. (10 Marks)	20	CO4
Q 11	In a parallel flow heat exchanger, hot fluid enters the heat exchanger at a temperature of 150°C and a mass flow rate of 3 kg/s. The cooling medium enters the heat exchanger at a temperature of 30°C with a mass flow rate of 0.5 kg/s and leaves at a temperature of 70°C. The specific heat capacities of the hot and cold fluids are 1.15 kJ/kg·K and 4.18 kJ/kg·K, respectively. The convection heat transfer coefficient on the inner and	20	CO4

a fouling factor of 0.0 on the shell side, det	is $300 \text{ W/m}^2 \cdot \text{K}$ and $800 \text{ W/m}^2 \cdot \text{K}$, respectively. For $2003 \text{ m}^2 \cdot \text{K/W}$ on the tube side and $0.0001 \text{ m}^2 \cdot \text{K/W}$ ermine (a) the overall heat transfer coefficient, (b) of the hot fluid and (c) surface area of the heat OR	
enters a thin-walled of surface area of 23 m W/m ² -K. Cold water enters the heat exchant the heat exchanger a fluids. After a period reduced to 500 W/m ² reduction in the over correlation provided	kJ/kg-K) with mass flow rate of 2.5 kg/s at 100°C concentric tube counterflow heat exchanger with a a^2 and an overall heat transfer coefficient of 1000 $(c_{pc} = 4.18 \text{ kJ/kg-K})$ with mass flow rate of 5 kg/s nger at 20°C, determine (<i>a</i>) the heat transfer rate for nd (<i>b</i>) the outlet temperatures of the cold and hot of operation, the overall heat transfer coefficient is ² K, determine (<i>c</i>) the fouling factor that caused the all heat transfer coefficient. Use <i>effectiveness-NTU</i> below wherever required. $a = \frac{1 - \exp[-NTU(1 - c)]}{1 - c \exp[-NTU(1 - c)]}$ (for $c < 1$) $a = \frac{NTU}{1 + NTU}$ (for $c = 1$)	