Name:	
-------	--

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Programme Name : B. Tech- Mechatronics Semester : III

Course Name : Materials Science Time : 03 hrs.

Course Code : MEMA2001 Max. Marks : 100

Nos. of page(s) : 2

Instructions: Attempt all questions. One question from section B and C have an internal Choice. Assume

CECTION A

any missing data if required.

SECTION A				
S. No.		Marks	CO	
Q1	Neatly sketch the stress strain curve for ductile and brittle materials.	4	CO1	
Q2	Sate Hume Rothery,s rules and discuss in detail	4	CO1	
Q3	Define stress concentration and its negative effect on fatigue life.	4	CO2	
Q4	Differentiate in between eutectic, eutectoid and peritectic invariant reactions.	4	CO3	
Q5	Explain why materials are stronger in wire form than bulk form.	4	CO4	
	SECTION B	l	I	
Q6	(a) Define homogeneous and heterogeneous nucleation.(b) Write the coordination number for BCC, FCC, and HCP unit cell.(c) Define heat treatment process and mentioned its purposes.	3 3 4	CO1	
Q7	(a) Differentiate ductile fracture and brittle fracture.(b) Explain transgranular and intergranular fracture with a neat sketch.	5 5	CO2	
Q8	 (a) Construct a eutectoid phase diagram for the system A-B for the following data and label the phase diagram: Melting point of A = 1000 °C Melting point of B = 800 °C Eutectoid Point = 600 °C at 40 atomic % B Maximum solubility of A in B at 500 °C= 15 atomic % Maximum solubility of B in A at 500 °C= 22 atomic % Limits of solid solution at 300 °C = 10 atomic % in A, 5 atomic % in B. (b) Write the invariant reaction with phase composition 	2	CO3	
Q9	A (i) Define fatigue failure. Neatly sketch the various fatigue loading cycles. (ii) Define Low cycle fatigue and explain the method to estimate the fatigue damage in metals.	5 5	CO2	

Or

	B (i) Explain Griffith theory of brittle fracture. (ii) Explain with neat sketches the two modes of fracture failure of metal.	5 5	
	SECTION-C		
Q10	 (a) Classify heat treatment process (b) Describe full annealing, Recrystallization Annealing, Stress Relief Annealing, and Spheroidization Annealing. (c) Discuss cyaniding and nitriding processes. 	6 8	CO3
Q11	A. Analyze the Cu-Ag Phase diagram and answer the following questions: (i) Write the solubility limit and temperature of eutectic composition. (ii) Write the invariant reaction with phase composition. (iii) Sketch and explain the microstructure evolution of 50% Cu - 50% Ag alloy. Composition (at% Ag) 200 40 60 80 100 2000 A 1000 Cg 100	2 2 10	CO4
	Or B. (a) List out different failure theories used during design of machine components. (b) Discuss any two theories of failure (c) Discuss how you will design a sord having hard surface and toughen core.	5 10 5	