Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Mathematics III (Statistical and Numerical Methods) Program: B.Tech Mechanical Course Code: MATH2045 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Let X be a continuous random variable with probability density function $f(x)$ defined as $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$			
	Find mean and variance of the distribution. If $2x$ in the definition of the density function is replaced with $3x$, then how your response to the question will change?	4	CO1	
Q 2	A team plays 10 games. The probability of winning a game is 0.4. Find the expected number of wins and variance of winning by the team the probability that the team wins at least 3 games.	4	CO1	
Q 3	Discuss the hypothesis testing for comparing means of two dependent variables.	4	CO2	
Q 4	Differentiate between Newton's forward and backward difference interpolation formulae.	4	CO3	
Q 5	Discuss Picard's method for solving a first order differential equation.	4	CO4	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Define moments of random variables. Explain the significance of first four moments.	10	CO1	
Q 7	A mechanical engineer claims that mean temperature of certain metal in a specific condition in kelvin is 350K. To verify the claim, following temperatures are obtained at randomly selected time at the specific condition of the metal: 340, 356, 332, 362, 318, 344, 386, 402, 322, 360, 362, 354, 340, 372, 338, 375, 364, 355, 324, and 370. Do the data contradict the engineer's claim at 0.05 significance level? (Use $t_{0.025,19} = 2.093$)	10	CO2	

Q 8	Use Simpson's $\frac{1}{3}$ rd rule to evaluate $\int_0^1 \frac{1}{1+x} dx$ by dividing the interval of integration into 8 equal parts. Use the evaluated value to approximate $\log_e 2$.	10	CO3
Q 9	Solve the boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, under the condition $u(0,t) = u(1,t) = 0$ and $u(x,0) = \sin \pi x$, $0 \le x \le 1$, using Bender-Schmidt method (Take $h = 0.2$, $\alpha = 0.5$)	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10A	Compute five iterations of the bisection method to find a root between 2.74 and 2.75 of the function $x log_{10}x = 1.2$.	10	CO3
Q 10B	Compute five iterations for solving the following system of equations using Gauss-Seidel Iteration method with initial choice as $x = 0$, y = 0, z = 0 and $w = 0x - 0.25y - 0.25z = 50-0.25x + y - 0.25w = 50-0.25x + z - 0.25w = 25-0.25y - 0.25z + w = 25$	10	CO3
Q 11	Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ using Liebmann's method for the square mesh of the following figure. 0 500 1000 500 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	CO4