Name: Enrolment No:			
Course: Mathematics III (Statistical and Numerical Methods) Program: B.Tech Mechanical Course Code: MATH2045	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, December 2022 Mathematics III (Statistical and Numerical Methods) B.Tech Mechanical Code: MATH2045 ions:	Semester: III Time : 03 hrs . Max. Marks: 100	hrs. 0
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Let X be a continuous random variable with probability density function $f(x)$ defined as $f(x)=\left\{\begin{array}{cl}2 x, & 0<x<1 \\ 0, & \text { elsewhere }\end{array}\right.$ Find mean and variance of the distribution. If $2 x$ in the definition of the density function is replaced with $3 x$, then how your response to the question will change?	4	$\mathrm{CO1}$
Q 2	A team plays 10 games. The probability of winning a game is 0.4 . Find the expected number of wins and variance of winning by the team the probability that the team wins at least 3 games.	4	$\mathrm{CO1}$
Q 3	Discuss the hypothesis testing for comparing means of two dependent variables.	4	CO 2
Q 4	Differentiate between Newton's forward and backward difference interpolation formulae.	4	CO
Q 5	Discuss Picard's method for solving a first order differential equation.	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Define moments of random variables. Explain the significance of first four moments.	10	CO1
Q 7	A mechanical engineer claims that mean temperature of certain metal in a specific condition in kelvin is 350 K . To verify the claim, following temperatures are obtained at randomly selected time at the specific condition of the metal: $340,356,332,362,318,344,386,402,322$, $360,362,354,340,372,338,375,364,355,324$, and 370 . Do the data contradict the engineer's claim at 0.05 significance level? (Use $t_{0.025,19}=2.093$)	10	CO 2

Q 8	Use Simpson's $\frac{1}{3}$ rd rule to evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by dividing the interval of integration into 8 equal parts. Use the evaluated value to approximate $\log _{e} 2$.	10	$\mathrm{CO3}$
Q 9	Solve the boundary value problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, under the condition $u(0, t)=u(1, t)=0$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$, using BenderSchmidt method (Take $h=0.2, \alpha=0.5$)	10	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 10A	Compute five iterations of the bisection method to find a root between 2.74 and 2.75 of the function $x \log _{10} x=1.2$.	10	$\mathrm{CO3}$
Q 10B	Compute five iterations for solving the following system of equations using Gauss-Seidel Iteration method with initial choice as $x=0$, $\begin{aligned} & y=0, z=0 \text { and } w=0 \\ & x-0.25 y-0.25 z=50 \\ &-0.25 x+y-0.25 w=50 \\ &-0.25 x+z-0.25 w=25 \\ &-0.25 y-0.25 z+w=25 \end{aligned}$	10	$\mathrm{CO3}$
Q 11	Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ using Liebmann's method for the square mesh of the following figure. Consider a laterally insulated metal bar of length 1 and such that $c^{2}=1$ in the heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$. Suppose that the ends of the bar are kept at temperature $u=0^{\circ} \mathrm{C}$ and the temperature in the bar at some instant call it $t=0$ is $f(x)=\sin \pi x$. Applying the Crank-Nicolson method with $h=0.2$ and $r=1$, find the temperature $u(x, t)$ in the bar for $0 \leq t \leq 0.2$.	20	$\mathrm{CO4}$

