Name: Enrolment No:			
Course: Engg. Mechanics Semester: III Program: B.Tech EE, CERP, FSE, Civil Time $: \mathbf{0 3}$ hrs. Course Code: MECH2032 Max. Marks: $\mathbf{1 0 0}$ Instructions: All the questions are compulsory.			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
1	Replace the loading on the frame given in figure by its resultant in magnitude and position.	4	CO1
2	Define a perfect frame. Also discuss at least four differences between method of section and method of joint for the analysis of truss.	4	CO1
3	Draw the free body diagram of the bar AB .	4	CO1

4	If force F is to have a component along the u axis of 6 kN , determine the magnitude of F and the magnitude of its component along v axis.	4	CO1
5	The equation of motion of an engine is given by $s=2 t^{3}-6 t^{2}-5$, where (s) is in metres and (t) in seconds. Calculate (a) displacement and acceleration when velocity is zero ; and (b) displacement and velocity when acceleration is zero.	4	$\mathrm{CO1}$
	$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$		
6	A uniform ladder of 4 m length rests against a vertical wall with which it makes an angle of 45°. The coefficient of friction between the ladder and the wall is 0.4 and that between ladder and the floor is 0.5 . If a man, whose `weight is one-half of that of the ladder ascends it, compute the distance ascended by the man when the ladder slips.	10	CO 2

7	For the system shown in figure, find the tension in the cable and reaction at the support.		
		10	CO 2
8	Find the forces in the members $\mathrm{AB}, \mathrm{BC}, \mathrm{BF}$ and FD of truss in magnitude and direction.		
		10	CO 2

9	A beam ABCD is loaded as shown in figure below. Determine the reactions at the supports at points B and C. A beam AB 5 m long, supported on two intermediate supports 3 m apart, carries a uniformly distributed load of $0.6 \mathrm{kN} / \mathrm{m}$. The beam also carries two concentrated loads of 3 kN at left hand end A , and 5 kN at the right hand end B as shown in figure. Determine the location of the two supports, so that both the reactions are equal.	10	CO 2
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$		
10	Find the moment of inertia of the shaded portion: (a) about the given axis $\mathrm{X}-\mathrm{X}$ and; (b) about the centroidal axis parallel to the given $\mathrm{X}-\mathrm{X}$ axis	20	CO 3

