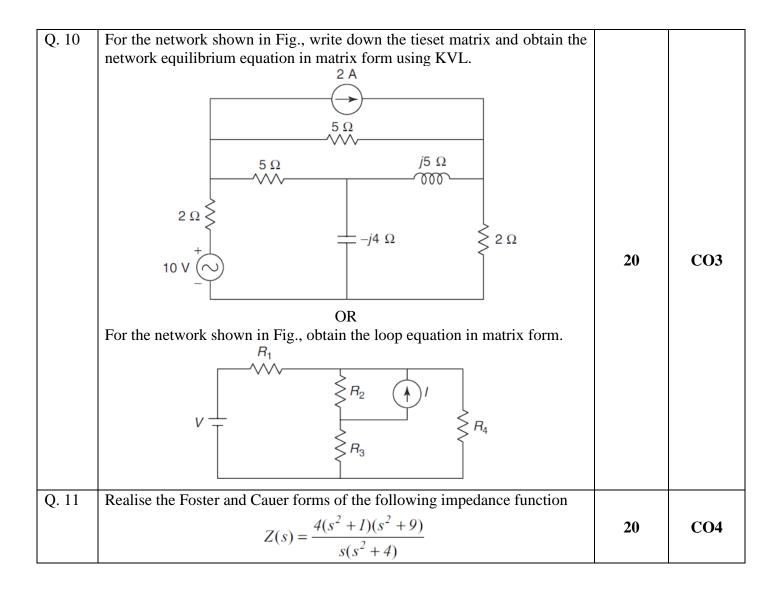
Name:

Enrolment No:



UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Network Analysis Program: B Tech ECE Course Code: ECEG 2020 Semester: III Time : 03 hrs. Max. Marks: 100

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	A network contains linear resistors and ideal voltage sources. If values of all the resistors are doubled then the voltage across each resistor is (a) halved (b) doubled (c) increased by four times (d) not changed	4	C01	
Q 2	Four resistances 80 ohm, 50 ohm, 25 ohm, and R are connected in parallel. Current through 25 ohm resistor is 4 A. Total current of the supply is 10 A. What will be the value of R ?	4	CO2	
Q 3	What will be the voltage V_0 in Fig. ? 8 A 10Ω 6Ω 12Ω V_0 $-$	4	C01	
Q 4	In the network of Fig., what will be value of RL to deliver the maximum power? I_1 $0.5I_1$ I_2 I_2 I_3 I_4 I_4 I_5 I_6 I_7 I	4	C01	
Q 5	Identify which of the following is NOT a tree of the graph shown in Fig	4	CO3	

	(a) begh (b) defg (c) bdeg (d) aegh SECTION B		
	(4Qx10M = 40 Marks)		
Q.6	Find Y-parameters of the network shown in Figure.		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	CO2
Q.7	In the network shown in Fig., find voltage V_2 such that $V_X = 0$.		
	$2 A \land 0.1 V_x \land 3 A$ $10 \Omega \qquad 5 \Omega$ $24 V \qquad V_x \gtrless 20 \Omega \qquad V_2$	10	C01
Q.8	Find the current through the 10 ohm resistor in the network using Thevenin's theorem. 50Ω $50 V$ $50 V$ 40Ω 10Ω	10	CO1
Q.9	Derive a relation to find the z parameters in terms of Y, ABCD parameters.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		

