Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Analog Electronics-I Program: B. Tech (ECE) Semester: III Time: 03 hrs. Course Code: ECEG2011 Max. Marks: 100 Instructions: The QP is 3 pages long. Draw the neat and clean diagram wherever it is needed. ## **SECTION A** | S. No. | | Marks | CO | |--------|---|-------|-----| | Q 1 | Given that $\beta_{dc} = 120$ and $I_C = 2.0$ mA, find I_E and I_B . | 4 | CO1 | | Q 2 | State Miller's theorem with the aid of a circuit diagram. Write the importance of this theorem in circuit analysis. | 4 | CO1 | | Q 3 | Calculate the power gain in decibels for each of the following cases. (a) $P_o = 100 \text{ W}$, $P_i = 5 \text{ W}$. (b) $P_o = 100 \text{ mW}$, $P_i = 5 \text{ mW}$. | 4 | CO3 | | Q 4 | For a typical BJT ($h_{ie} = 2.4 \text{ k}$, $h_{fe} = 100$, $h_{re} = 4 \times 10^{-4}$, and $h_{oe} = 25 \mu\text{S}$), sketch the following:
a. Common-emitter hybrid equivalent model.
b. Common-emitter r_e equivalent model. | 4 | CO1 | | Q 5 | A n-channel JFET has device parameters of $I_{DSS}=8$ mA and $V_P=4$ V. Sketch the transfer characteristics. | 4 | CO2 | ## **SECTION B** | Q 7 | Three identical cascaded stages have an overall upper 3-db frequency of $20kHz$ and a lower 3-dB frequency of $20Hz$. What are f_L and f_H of each stage? Assume non-interacting stages. | 10 | CO4 | |------|--|------|-----| | Q 8 | (a) Compare Field Effect Transistors' (FET) advantages and disadvantages to those of BJTs. (b) Draw the basic construction of a depletion-type MOSFET. What is the effect of V_{GS} on channel width? | 5+5 | CO2 | | Q 9 | Given that $I_{CQ}=2$ mA and $V_{CEQ}=10$ V determine R_1 and R_C for the network of following figure $ \begin{array}{c} {}_{18}{}_{V_0} \\ {}_{V_i}{}_{O} \end{array} $ | 10 | CO1 | | | SECTION-C | | 1 | | Q 10 | (a) What is the significant difference between the construction of an enhancement type MOSFET and a depletion type MOSFET. (b) For the n-channel depletion-type MOSFET of below figure, determine: (i) I_{DQ} and V_{GSQ} (ii) V_{DS} . $R_1 = \frac{110 \text{ M}\Omega}{R_S} = \frac{1.8 \text{ k}\Omega}{R_S} k}\Omega}{$ | 5+15 | CO2 | | Q 11 | Determine Z_i , Z_o , and V_o for the network of following figure if $V_i = 20$ mV. | 20 | CO3 | For the Darlington network of the following figure: - (a) Determine the dc levels of V_{B1} , V_{C1} , V_{E2} , V_{CB1} , and V_{CE2} . - (b) Find the currents I_{B1}, I_{B2}, and I_{E2}. - (c) Calculate Z_i and Z_o . - (d) Determine the voltage gain $A_v = V_o \, / \, V_i$ and current gain $A_i = I_o \, / \, I_i$.