Name: Enrolment No:			
Course: Analog Electronics-I Semester: III Program: B. Tech (ECE) Time: 03 hrs. Course Code: ECEG2011 Max. Marks: 100 Instructions: The QP is $\mathbf{3}$ pages long. Draw the neat and clean diagram wherever it is needed.			
SECTION A			
S. No.		Marks	CO
Q 1	Given that $\beta_{\mathrm{dc}}=120$ and $\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}$, find I_{E} and I_{B}.	4	CO1
Q 2	State Miller's theorem with the aid of a circuit diagram. Write the importance of this theorem in circuit analysis.	4	CO1
Q 3	Calculate the power gain in decibels for each of the following cases. (a) $\mathrm{P}_{\mathrm{o}}=100 \mathrm{~W}, \mathrm{P}_{\mathrm{i}}=5 \mathrm{~W}$. (b) $\mathrm{P}_{\mathrm{o}}=100 \mathrm{~mW}, \mathrm{P}_{\mathrm{i}}=5 \mathrm{~mW}$.	4	CO 3
Q 4	For a typical BJT ($\mathrm{h}_{\mathrm{ie}}=2.4 \mathrm{k}, \mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{re}}=4 \times 10^{-4}$, and $\left.\mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{~S}\right)$, sketch the following: a. Common-emitter hybrid equivalent model. b. Common-emitter r_{e} equivalent model.	4	CO1
Q 5	A n-channel JFET has device parameters of $\mathrm{I}_{\mathrm{DSS}}=8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{P}}=4 \mathrm{~V}$. Sketch the transfer characteristics.	4	CO 2
SECTION B			
Q 6	Determine $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$, and V_{o} for the network of the following figure if $\mathrm{V}_{\mathrm{i}}=20$ mV .	10	CO 2

Q 7	Three identical cascaded stages have an overall upper 3-db frequency of 20 kHz and a lower $3-\mathrm{dB}$ frequency of 20 Hz . What are f_{L} and f_{H} of each stage? Assume non-interacting stages.	10	$\mathrm{CO4}$
Q 8	(a) Compare Field Effect Transistors' (FET) advantages and disadvantages to those of BJTs. (b) Draw the basic construction of a depletion-type MOSFET. What is the effect of V_{GS} on channel width?	5+5	CO 2
Q 9	Given that $\mathrm{I}_{\mathrm{CQ}}=2 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEQ}}=10 \mathrm{~V}$ determine R_{1} and R_{C} for the network of following figure	10	CO1
SECTION-C			
Q 10	(a) What is the significant difference between the construction of an enhancement type MOSFET and a depletion type MOSFET. (b) For the n-channel depletion-type MOSFET of below figure, determine: (i) $I_{D Q}$ and $V_{G S Q}$ (ii) $V_{D S}$	5+15	CO 2
Q 11	Determine $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$, and V_{o} for the network of following figure if $\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}$.	20	$\mathrm{CO3}$

