Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Signals and Systems Semester: III

Program: B. Tech Mechatronics/ B.Tech ECE Time : 03 hrs.
Course Code: ECEG 2010 Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

	(5QA4VI-20VIAIRS)		
S. No.		Marks	CO
Q 1	Find whether the following systems are		
	(1) Static and Dynamic (2)Linear and Non Linear		
	(3) Causal and Non causal (4) Time invariant and time Variant	4	CO1
	(a) $Y(t) = x(t) $		
Q 2	Determine whether the following signals are power or energy signals		
	or neither.	4	CO1
	(a) $x(t) = e^{-5t}u(t)$	•	COI
Q 3	Consider a continuous time system with input x(t) and output y(t) related		
	by $y(t) = x \sin(t)$	4	CO1
	(a) Is this system Causal?	4	COI
	(b) Is this system linear ?		
Q 4	What is the relation between laplace transform and fourier transform?	4	CO3
Q 5	What is the condition for Z Transform to exist?	4	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Use the unilateral Laplace transform to determine the output of a system represented by the differential equation		
		10	CO3
	$\frac{d^{2}y(t)}{dt^{2}} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 6x(t)$	10	003
			1

	In response to the input $x(t) = u(t)$. Assume to the initial condition on the		
	system are $y(0^-) = 1$ and $\dot{y}(0^-) = 2$. Identify the zero state response of		
	the system and the zero input response.		
Q 7	Find the Fourier Transform of the causal sequence	10	002
	$x(n) = a^n u(n), a < 1$	10	CO2
Q 8	Determine the Laplace transform and the associated ROC for each of the following function of time. (a) $g(t) = te^{-2 t }$	10	CO2
	$(b) x(t) = \delta(3t) + u(3t)$		
Q 9	Design a discrete time LTI system with the property that if the input is		
	$x(n) = \left(\frac{1}{2}\right)^n u(n) - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u(n-1)$	10	
	Then the output is		
	$y(n) = \left(\frac{1}{3}\right)^n u(n)$		
	(a) Find the impulse response and frequency response of a discrete time LTI system.		CO3
	OR		
	Determine the z transform of the anticausal signal $x(n) = -a^n u$ (-n-1) and depict the ROC and the locations of poles and zeros in the z plane.	10	
	SECTION-C		
0.10	(2Qx20M=40 Marks)		ı
Q 10	A causal discrete time LTI system is described by $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$		
	Where x(n) and y(n) are the input and output of the system, respectively (a) Determine the system function H(z) for a causal system function.	20	CO3
	(b) Find the impulse response h(n) of the system.(c) Find the step response of the system		
Q 11	An LTI system is characterized by the system function	20	
	$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$		

Specify the ROC of H(z) and determine h (n) for the following conditions:		CO4
(a) The system is causal and unstable		
(b) The system is noncausal and stable		
OR		
The system function of a causal LTI system is	20	
$H(s) = \frac{s+1}{s^2 + 2s + 2}$		
Determine the response Y(t) when the input $x(t) = e^{- t }$		CO3
(b) Find the inverse transform of the functions		
$X(s) = \frac{1}{s^2(s+2)}$		