Name: Enrolment No:			
Course: Differential Equations Integrated B.Sc.-M.Sc. Physics/Chemistry Course Code: MATH1034G Instructions: All questions are compulsory.		Semester: III Time : 03 hrs . Max. Marks: 100	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Construct a differential equation by the elimination of the arbitrary constants a and b from the equation $a x^{2}+b y^{2}=1$.	4	CO1
Q 2	Solve the differential equation $y=3 x+\log p$ for p. Here p stands for $\frac{d y}{d x}$.	4	$\mathrm{CO2}$
Q3	Find the complete solution of the following differential equation: $\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+5 y=e^{x} \cos x$	4	$\mathrm{CO3}$
Q4	Solve the following simultaneous equations: $\frac{d y}{d x}+y=z+e^{x}, \quad \frac{d z}{d x}+z=y+e^{x}$	4	$\mathrm{CO4}$
Q5	Classify the following partial differential equation (a) $2 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+3 \frac{\partial^{2} u}{\partial y^{2}}=2$ (b) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} u}{\partial y \partial z}+\frac{\partial^{2} u}{\partial z \partial y}=0$	4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	Solve the following differential equation: $\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) d y=0$	10	CO2
Q7	Find the complete solution of the differential equation: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=\sin (\log x)$.	10	$\mathrm{CO3}$

Q8	Solve the following simultaneous equations: $D^{2} x-D y=2 x+2 t, D x+4 D y=3 y$ Where D stands for $\frac{d}{d t}$	10	CO4
Q9	Find the general solution of the partial differential equation $\left\{m y(x+y)-n z^{2}\right\} \frac{\partial z}{\partial x}-\left\{l x(x+y)-n z^{2}\right\} \frac{\partial z}{\partial y}=(l x-m y) z$ OR Find the integral surface of the partial differential equation $(x-y) \frac{\partial z}{\partial x}+(y-x-z) \frac{\partial z}{\partial y}=z$ through the circle $z=1, x^{2}+y^{2}=1$.	10	CO5
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	(a) Use variation of parameter method to solve the following differential equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan a x$ (b) Find the complete solution of the following differential equation: $\left(D^{2}+9\right) y=x \sin x, D \equiv \frac{d}{d x}$ OR (a) Evaluate the solution of the initial value problem $\left(D^{2}+1\right)^{2}=24 x \cos x$ given that $y=D y=D^{2} y=0$ and $D^{3} y=12$ when $x=0$. (b) Solve the following differential equation $(3 \mathrm{x}+2)^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+3(3 \mathrm{x}+2)\left(\frac{d y}{d x}\right)-36 y=3 x^{2}+4 x+1$	10+10	CO 3
Q11	(a) Using Charpit's method, find a complete integral of $p^{2}-y^{2} q=y^{2}-x^{2}, p=\frac{\partial z}{\partial x} \text { and } q=\frac{\partial z}{\partial y}$ (b) Solve the partial differential equation $\begin{aligned} \left(2 x^{2}+y^{2}+z^{2}\right. & -2 y z-z x-x y) \frac{\partial z}{\partial x} \\ & +\left(x^{2}+2 y^{2}+z^{2}-y z-2 z x-x y\right) \frac{\partial z}{\partial y} \\ & =\left(x^{2}+y^{2}+2 z^{2}-y z-z x-2 x y\right) \end{aligned}$	10+10	$\mathrm{CO5}$

