Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Differential Equations Semester: III

Program: B. Sc. (Hons.) Physics/Chemistry/Geology &

Integrated B.Sc.-M.Sc. Physics/Chemistry Time : 03 hrs.

Course Code: MATH1034G Max. Marks: 100

Instructions: All questions are compulsory.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Construct a differential equation by the elimination of the arbitrary constants a and b from the equation $ax^2 + by^2 = 1$.	4	CO1
Q 2	Solve the differential equation $y = 3x + \log p$ for p . Here p stands for $\frac{dy}{dx}$.	4	CO2
Q3	Find the complete solution of the following differential equation: $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 5y = e^x \cos x$	4	CO3
Q4	Solve the following simultaneous equations: $\frac{dy}{dx} + y = z + e^x, \qquad \frac{dz}{dx} + z = y + e^x$	4	CO4
Q5	Classify the following partial differential equation (a) $2 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} = 2$ (b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z \partial y} + \frac{\partial^2 u}{\partial z \partial y} = 0$	4	CO5
	SECTION B (4Qx10M= 40 Marks)		
Q6	Solve the following differential equation: $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y - x^2y^2 - 3x)dy = 0$	10	CO2
Q7	Find the complete solution of the differential equation: $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = \sin(\log x).$	10	CO3

Q8	Solve the following simultaneous equations:		
	$D^2x - Dy = 2x + 2t, Dx + 4Dy = 3y$	10	CO4
	Where <i>D</i> stands for $\frac{d}{dt}$	20	
Q9	Find the general solution of the partial differential equation		
	$\{my(x+y) - nz^2\} \frac{\partial z}{\partial x} - \{lx(x+y) - nz^2\} \frac{\partial z}{\partial y} = (lx - my)z$		
	OR	10	CO5
	Find the integral surface of the partial differential equation		
	$(x-y)\frac{\partial z}{\partial x} + (y-x-z)\frac{\partial z}{\partial y} = z \text{ through the circle } z = 1, x^2 + y^2 = 1.$		
	SECTION-C		
0.10	(2Qx20M=40 Marks)		T
Q10	(a) Use variation of parameter method to solve the following differential equation		
	• • • • • • • • • • • • • • • • • • • •		
	$\frac{d^2y}{dx^2} + a^2y = \tan ax$		
	(b) Find the complete solution of the following differential equation:		
	$(D^2 + 9)y = x \sin x, D \equiv \frac{d}{dx}$		
		10+10	CO3
	OR (a) Evaluate the solution of the initial value problem		
	(a) Evaluate the solution of the initial value problem $(D^2 + 1)^2 = 24x \cos x$		
	given that $y = Dy = D^2y = 0$ and $D^3y = 12$ when $x = 0$.		
	(b) Solve the following differential equation		
	$(3x+2)^2 \left(\frac{d^2y}{dx^2}\right) + 3(3x+2) \left(\frac{dy}{dx}\right) - 36y = 3x^2 + 4x + 1$		
	$(3x + 2) \left(dx^2 \right) + 3(3x + 2) \left(dx \right) - 30y = 3x + 1x + 1$		
Q11	(a) Using Charpit's method, find a complete integral of		
	$p^2 - y^2 q = y^2 - x^2$, $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$		
	$\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y}$		
	(b) Solve the partial differential equation		
	$(2x^2 + y^2 + z^2 - 2yz - zx - xy)\frac{\partial z}{\partial x}$	10+10	CO5
	$+ (x^2 + 2y^2 + z^2 - yz - 2zx - xy)\frac{\partial z}{\partial y}$		
	$= (x^2 + y^2 + 2z^2 - yz - zx - 2xy)$		