Name: Enrolment No:			
Course: Electrical Circuit Analysis Semester: III Program: B.Tech (EE) Time: 03 hrs. Course Code: EPEG2009 Max. Marks: 100 Instructions: Read the instructions provided for every question properly before attempting the answer. Use of calculator is permitted.			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain with suitable diagram the two Kirchhoff's Law.	4	CO1
Q 2	Evaluate the Laplace transform of: (a) u	4	CO4
Q 3	Test results for a two-port network are (a) $\mathrm{I}_{1}=0.1 \angle 0^{\circ} \mathrm{A}, \mathrm{V}_{1}=5.2 \angle 50^{\circ}$ $\mathrm{V}, \mathrm{V}_{2}=4.1 \angle-25^{\circ} \mathrm{V}$ with Port 2 open circuited (b) $\mathrm{I}_{2}=0.1 \angle 0^{\circ} \mathrm{A}, \mathrm{V}_{1}=$ $3.1 \angle-80^{\circ} \mathrm{V}, \mathrm{V}_{2}=4.2 \angle 60^{\circ} \mathrm{V}$, with Port 1 open circuited. Find Z parameters.	4	$\mathrm{CO5}$
Q 4	Draw the equivalent circuit at $\mathrm{t}=0^{+}$of the elements with initial conditions as given below:	4	CO 2

Q 5	Explain the advantages of a three-phase system.	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Find the current through the 6Ω resistor using superposition theorem.	10	CO1
Q 7	Explain two-wattmeter method along with the phasor diagram and how it can be used to measure three-phase power.	10	CO3
Q 8	In the network of figure below, the switch is moved from a to b at $\mathrm{t}=0$. Determine $\mathrm{i}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$.	10	CO4
Q9	In the network shown in figure below, the switch is opened at $\mathrm{t}=0$. Solve for $\mathrm{v}, \frac{\mathrm{dv}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$. In the network shown in Figure below, the switch is changed from the position 1 to the position 2 at $\mathrm{t}=0$, steady condition having reached before switching. Find the values of $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$.	10	$\mathrm{CO2}$

