Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Electrical Circuit Analysis Semester: III

Program: B.Tech (EE)

Course Code: EPEG2009

Time: 03 hrs.

Max. Marks: 100

Instructions: Read the instructions provided for every question properly before attempting the answer. Use of calculator is permitted.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	Explain with suitable diagram the two Kirchhoff's Law.	4	CO1	
Q 2	Evaluate the Laplace transform of: (a) $u(t) = 1$ $t > 0$ $u(t) = 0$ $t < 0$ (b) $r(t) = t$ $t > 0$ $r(t) = 0$ $t < 0$	4	CO4	
Q 3	Test results for a two-port network are (a) $I_1 = 0.1 \angle 0^\circ A$, $V_1 = 5.2 \angle 50^\circ V$, $V_2 = 4.1 \angle -25^\circ V$ with Port 2 open circuited (b) $I_2 = 0.1 \angle 0^\circ A$, $V_1 = 3.1 \angle -80^\circ V$, $V_2 = 4.2 \angle 60^\circ V$, with Port 1 open circuited. Find Z parameters.	4	CO5	
Q 4	Draw the equivalent circuit at $t = 0^+$ of the elements with initial conditions as given below: $ \begin{array}{c} R \\ \hline C \\ \hline \end{array} $ $ \begin{array}{c} C \\ \hline \end{array} $ $ \begin{array}{c} V_0 \\ + \\ \end{array} $	4	CO2	

Q 5	Explain the advantages of a three-phase system.	4	CO3
	SECTION B		<u> </u>
	(4Qx10M=40 Marks)		
Q 6	Find the current through the 6Ω resistor using superposition theorem. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO1
Q 7	Explain two-wattmeter method along with the phasor diagram and how it can be used to measure three-phase power.	10	CO3
Q 8	In the network of figure below, the switch is moved from a to b at $t=0$. Determine i(t) and $v_c(t)$. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	10	CO4
Q9	In the network shown in figure below, the switch is opened at $t=0$. Solve for v , $\frac{dv}{dt}$ and $\frac{d^2v}{dt^2}$ at $t=0^+$. $v(t)$ OR In the network shown in Figure below, the switch is changed from the position 1 to the position 2 at $t=0$, steady condition having reached before switching. Find the values of i , $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t=0^+$.	10	CO2

