Name: Enrolment No:			
Cours Progr Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, December 2022 Engineering Mechanics m: B.Tech. Aerospace Code: MECH 2031 ions: 1. All questions of the particular section should be answered coll 2. Assume suitable right-handed coordinate system if it is not \mathbf{m}	mester: ne: 03 ax. Mar ively at oned in	0 lace. em.
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain two-force member and three-force member principle.	4	CO1
Q 2	State \& derive the expression for parallel axis theorem.	4	CO1
Q 3	What is the condition of self-locking in wedge and screw jack friction applications.	4	CO1
Q 4	Explain instantaneous centre of rotation.	4	CO1
Q 5	State D'Alembert's principle.	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	A car is made to move by applying resultant force $\mathrm{R}=2000 \mathrm{~N}$ along the x-axis. This resultant is developed due to two pulling forces F_{1} and F_{2} on two ropes, as shown in figure. Determine the tension in individual ropes.	10	$\mathrm{CO2}$
Q 7	Drive the relation $T_{1} / T_{2}=e^{\mu \theta}$ of the belt friction for the flat belt, where T_{1} and T_{2} are the tension in tight and slack side respectively. μ is the coefficient of static friction between the belt and pulley surface. The coefficient of static friction between block B and the horizontal surface and between the rope and support C is 0.40 . Knowing that $W_{A}=30 \mathrm{lb}$. Determine the smallest weight of block B for which equilibrium is maintained.	10	$\mathrm{CO2}$

Q 8	The motion of a flywheel around its geometrical axis is described by the equation: $\omega=15 t^{2}+3 t+2 \mathrm{rad} / \mathrm{s}$ and angular displacement is 160 radians at $t=3 \mathrm{sec}$. Find the angular acceleration, velocity and displacement at $\mathrm{t}=1 \mathrm{sec}$.	10	CO 2
Q 9	Crank OA rotates at 60 rpm in clockwise sense. In the position shown $\theta=40^{\circ}$ determine angular velocity of AB and velocity of B which is constrained to move in a horizontal cylinder. A uniform cylinder to which a $\operatorname{rod} A B$ is pinned at A and the other end of the $\operatorname{rod} B$ is moving along a vertical wall as shown below. If the end B of the rod is moving upward along the wall at a speed of $3.3 \mathrm{~m} / \mathrm{s}$, find the angular velocity of the cylinder assuming that the cylinder is rolling without slipping.	10	CO 2
SECTION-C(2Qx20M=40 Marks)			
Q 10	The co-efficient of friction are as follows: 0.25 at the floor, 0.30 at the wall, and 0.20 between blocks $\mathbf{1}$ and $\mathbf{2}$. The weight of block $\mathbf{2}$ is 2000 N . Find the minimum value of force P applied to the lower block that will hold the system in equilibrium. If the weight of block 1 is 4000 N , then what will be the minimum force P applied to hold the system will be in equilibrium.	20	CO 3

Q11

