Name: Enrolment No:						univens			
Instructions: 1. Section A has 5 questions. All questions are compulsory. 2. Section B has 4 questions. All questions are compulsory. Question 9 has internal choice to attempt any one. 3. Section C has 2 questions. All questions are compulsory. Question 11 has internal choice to attempt any one.									
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$									
S. No.								Marks	CO
Q 1	For $r=$ error in h	$6-2)$	the p	ntage	$\text { in } r \text { at }$	$1 \text {, if } \mathrm{t}$	rcentage	4	CO1
Q 2	If $y(25)$ apply Ga	$\begin{aligned} & 0.270 \\ & \text { forwa } \end{aligned}$	$\begin{aligned} & (30)= \\ & \text { terpola } \end{aligned}$	027, formu	$\begin{aligned} &)=0 . \\ & \text { obtain } \end{aligned}$	$\begin{aligned} & 5, y(4 \\ & 2) . \end{aligned}$	$=0.3794,$	4	CO2
Q 3	Find, from the following table, the area bounded by the curve $y=f(x)$ and the x-axis from $x=7.47$ to $x=7.52$.							4	$\mathrm{CO3}$
Q 4	Given: $\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 8 & 22 \\ 3 & 22 & 82 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 5 \\ 6 \\ -10 \end{array}\right]$ Compute the lower triangular matrix L of the Cholesky factorization method.							4	CO4

Q 5	Solve the boundary value problem $\left(1+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=2, y(0)=0, y(1)=1 / 2$ by finite difference method. Use central difference approximation with $h=$ $1 / 3$.	4	CO6
Inst	SECTION B (4Qx10M= 40 Marks) Question 9 has internal choice, attempt any one.		
Q 6	Find a real root correct to 4 decimal places in the interval $(0,1)$ of the equation $x=e^{-x}$ using the Newton-Raphson method.	10	C01
Q 7	Use Lagrange's interpolation formula to fit a polynomial to the following data:	10	CO 2
Q 8	The table below gives the result of an observation. $y(x)$ is the observed temperature in degrees centigrade of a vessel of heating water, x is the time in minutes from the beginning of observations: Find the approximate rate of heating at $x=1.1$ minutes.	10	CO 3
Q 9	Solve the following system of equations by Doolittle's method: $\begin{aligned} & 2 x+3 y+z=9 \\ & x+2 y+3 z=6 \\ & 3 x+y+2 z=8 \end{aligned}$ OR Use Gauss Jacobi's iterative method to solve the following system of equations: $\begin{gathered} 8 x-3 y+2 z=20 \\ 6 x+3 y+12 z=35 \\ 4 x+11 y-z=33 \end{gathered}$ Perform four iterations, taking initial approximation zero.	10	$\mathrm{CO4}$

SECTION-C(2Qx20M=40 Marks)			
Q 10	(a) Given that $\frac{d y}{d x}=x+\|\sqrt{y}\|$ with initial condition $y=1$ at $x=0$. Perform four iterations of Euler's modified method to obtain the solution at $x=0.2$, taking $h=0.2$. (b) Use the Runge-Kutta fourth order method to find the value of $y(0.5)$, taking step size $h=0.5$. Given that $\frac{d y}{d x}=x+\|\sqrt{y}\|, y(0)=1$	10+10	$\mathrm{CO5}$
Q 11	Solve the boundary value problem $u_{x x}+u_{y y}=x+y+1,0 \leq x \leq 1,0 \leq y \leq 1$ $u=0$ on the boundary numerically using five-point formula and Liebmann iteration for uniform mesh with mesh length $h=1 / 3$. Perform only four iterations of Liebmann method for the solution. OR Solve by Crank-Nicolson method the one-dimensional heat equation $u_{x x}=u_{t}$ subject to following initial and boundary conditions $u(x, 0)=0, u(0, t)=0 \text { and } u(1, t)=t$ for two time steps, using step length in x-direction $h=0.25$ and mesh ratio parameter $\lambda=1$.	20	CO6

