Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2022**

Course: Mechanics of Drilling Engineering

Semester: III Program: B.Tech APE UP : 03 hrs. Time Course Code: PEAU 2006 Max. Marks: 100

Instructions: All questions are compulsory. However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

SECTION A (**5Qx4M=20Marks**)

S. No.		Marks	СО
Q 1	Why to maintain hydrostatic pressure is greater than formation pressure? Justify	04	CO1
Q 2	Define Drill collars and HWDP?	04	CO2
Q 3	Optimizing weight on bit (WOB) is an essential part of drilling to ensure that the well deepens as drilling moves forward. Justify	04	CO2
Q 4	What is the normal range of pH of a drilling mud? Why a very high pH is undesirable in drilling muds?	04	CO1
Q 5	Explain the main causes for torque and drag during drilling an oil well. Under which circumstances a wellbore is known to be in poor hole condition.	04	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		•
Q 6	a) Draw the flow diagram of a "Mud Circulation Systemb) Explain any two properties of a drilling fluid and illustrate their importance	5+5	CO1 + CO2
Q 7	List and describe the functions of each of the component parts of the hoisting system on a conventional land drilling rig?	10	CO3

Q 8	Discuss the Selection criteria parameters of drill string along with all loads and selection procedure of drill pipe.	10	CO4
Q 9	A single-acting triplex pump of an output power of 1,250 hp is used to deliver the required rate at running speed of 110 strokes/min. The liner size and length are 5.5 and 30 inches, respectively. If the displacement efficiency is 90%, calculate the discharge pressure of the pump at that speed. OR While drilling, 250 hp was applied to rotate the drillstring and bit where 500 rpm was recorded from the rotary speed machine. In addition, 175 hp was applied to rotate 3,500 ft of drillpipe off 5 in OD with the same speed as drillstring. Assume that C _d = 0.000005. Calculate the required torque for drilling string and the specific gravity of mud.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		I
Q 10	The hoisting system of a rig derrick has a load of 350,000 lbf. The input power of the drawworks for the rig can be a maximum of 530 hp. Eight drilling lines are strung between the crown block and traveling block. Consider there is some loss of power due to friction within the hoisting system. Compute: (1) the static tension in the fast line when upward motion is impending, (2) the mechanical advantage of the block and tackle, (3) the maximum hook horsepower available, (4) the maximum hoisting speed, (5) if a 90 ft stand is required to be pulled, what should be the required time, (6) the actual derrick load, (7) the maximum equivalent derrick load, and (8) the derrick efficiency factor	20	CO5
Q 11	 I. Calculate the Drill collar Dimensions and weights: a. What is the weight in air of 200 ft of 9 1/2" x 2 13/16" drill collar? b. What is the weight of this drill collar when immersed in 11 ppg mud? c. It is not uncommon for 5" 19.5 lb/ft drill pipe to be used in the same string as 8 1/4" x 2 13/16" drill collars. Compare the nominal I.D. of this 	20	CO6

drill pipe and Drill collar size and note the differences in wall thickness of these tubulars.		
The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob.		
Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections.		
Calculate the weight of this string in 14 ppg mud.		
lculate the length of 9 1/2" x 2 13/16" drill collars that would be required provide 25,000 lbs Wob and keep the drill pipe in tension in 12 ppg mud		
OR		
drilling string consists of 750 ft of Drill Collar have weight of 90 ppf and rill Pipes have weight of 25 ppf was used to drill a well to a depth of 16,500 using 11.4 ppg drilling mud. If yield strength of drillpipe is 600,000 lbf d steel density is 65 ppg calculate the safety factor at this situation. And if e maximum overpull that can be applied to the drillstring is 75,000 lbf, to	20	CO6
	The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob. Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections. Calculate the weight of this string in 14 ppg mud. Calculate the length of 9 1/2" x 2 13/16" drill collars that would be required provide 25,000 lbs Wob and keep the drill pipe in tension in 12 ppg mud OR drilling string consists of 750 ft of Drill Collar have weight of 90 ppf and fill Pipes have weight of 25 ppf was used to drill a well to a depth of 16,500 using 11.4 ppg drilling mud. If yield strength of drillpipe is 600,000 lbf d steel density is 65 ppg calculate the safety factor at this situation. And if	The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob. Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections. Calculate the weight of this string in 14 ppg mud. Iculate the length of 9 1/2" x 2 13/16" drill collars that would be required provide 25,000 lbs Wob and keep the drill pipe in tension in 12 ppg mud OR drilling string consists of 750 ft of Drill Collar have weight of 90 ppf and fill Pipes have weight of 25 ppf was used to drill a well to a depth of 16,500 using 11.4 ppg drilling mud. If yield strength of drillpipe is 600,000 lbf d steel density is 65 ppg calculate the safety factor at this situation. And if

Tables

CAPACITY AND DISPLACEMENT OF DRILLPIPE

SIZE	NOMINAL WEIGHT	GRADE	APPROX WEIGHT	CAP	CAPACITY		OPEN END DISPLACEMENT		CLOSED END DISPLACEMENT	
CONN.	LB/FT	0.11.00	LB/FT	L/M	GALL/FT	L/M	GALL/FT	L/M	GALL/FT	
2 ³ / ₈ 2 ³ / ₈ IF NC26	6.65	E75 X95 G105	7.00 7.08 7.08	1.68	0.135	1.39 1.34 1.34	0.107 0.108 0.108	3.01 3.02 3.02	0.242 0.243 0.243	
2 ⁷ / ₈ 2 ⁷ / ₈ IF NC 31	10.4	E75 X95 G105 S135	10.82 10.89 10.89 11.20	2.36	0.190	2.05 2.06 2.06 2.12	0.165 0.166 0.166 0.171	4.41 4.42 4.42 4.48	0.355 0.356 0.356 0.361	
	9.5	E75	10.39	4.54	0.366	1.97	0.159	6.51	0.525	
31/2	13.3	E75 X95 G105	13.86 14.32 14.38	3.88 3.96 3.87	0.312 0.319 0.312	2.63 2.71 2.73	0.212 0.218 0.220	6.51 6.67 6.60	0.524 0.537 0.532	
IF NC38	15.5	E75 X95 G105	16.42 16.54 16.61	3.46	0.279	3.11 3.14 3.15	0.250 0.253 0.254	6.57 6.60 6.61	0.529 0.532 0.533	
5 4½	19.5	E75 X95 G105 S135	20.99 21.09 21.50 22.09	9.16	0.738	3.98 4.00 4.08 4.19	0.320 0.322 0.329 0.337	13.14 13.16 13.24 13.35	1.058 1.070 1.087 1.075	
IF NC50	25.6	E75 X95 G105	27.01 28.30 28.11	8.11 8.10 8.09	0.653 0.652 0.651	5.12 5.36 5.33	0.412 0.432 0.429	13.23 13.46 13.42	1.065 1.084 1.080	

DRILL COLLAR WEIGHTS (STEEL) POUNDS PER FOOT

Collar						E OF COL	LAR				
O.D.	1-1/2	1-74	2	2-1/4	2-1/2	$2^{-13}V_{18}$	3	3-1/4	3-1/2	3-1/4	4
3-3/6	24.4	22.2									
3-1/2	26.7	24.5			200						
$3^{-3}/4$	31.5	29.3	L	e e. Rece							
3-7/4	34.0	31.9	29.4	26.5							
4	36.7	34.5	32.0	29.2							
4-1/6	39.4	37.2	34.7	31.9							
4-1/4	42.2	40.0	37.5	34.7						. A	
4-1/2	48.0	45.8	43.3	40.5							
$4^{-3}l_{4}$	54.2	52.0	49.5	46.7	43.5						
5	60.2	58.5	55.9	53.1	49.9						
5-V _a	67.5	65.3	62.8	59.9	56.8	53.3					F
5-1/2	74.7	72.5	69.9	67.2	63.9	60.5	56.7				
5-7/4	82.1	79.9	77.5	74.6	71.5	67.9	64.1				
6	89.9	87.8	85.3	82.5	79.3	75.8	71.9	67.8	63.3		
6-1/4	98.1	95.9	93.5	90.6	87.5	83.9	80.1	75.9	71.5		
6-1/,	106.6	104.5	101.9	99.1	95.9	92.5	88.6	84.5	79.9		
6-7/	115.5	113.3	110.8	107.9	104.8	101.3	97.5	93.3	88.8		
7	124.6	122.5	119.9	117.1	113.9	110.5	106.6	102.5	97.9	93.1	87.9
7-1/4	134.1	131.9	129.5	126.6	123.5	119.9	116.1	111.9	107.5	102.6	97.5
$7^{-1}I_2$	143.9	141.7	139.3	136.5	133.3	129.8	125.9	121.8	117.3	112.5	107.3
$7^{-3}/_{4}$	154.1	151.9	149.5	146.6	143.5	139.9	136.1	131.9	127.5	122.6	117.5
8	164.6	162.5	149.9	157.1	153.9	150.5	146.6	142.5	137.9	133.1	127.9
8-7/-	175.4	173.3	170.8	167.9	164.8	161.3	157.5	153.3	148.8	143.9	138.8
8.7/2	186.6	184.4	181.9	179.1	175.9	168.6	172.5	164.5	159.9	155.1	149.9
8-7/	198.1	195.9	193.9	190.6	187.4	183.9	180.1	175.9	. 171.4	166.6	161.5
9	o s an of each	207.8	205.3	202.4	199.3	195.8	191.9	187.8	183.3	178.5	173.3
9-1/2		232.4	229.9	227.1	223.9	220.4	216.6	212.4	297.9	203.1	197.9
10	A	20,000,000	255.9	253.1	249.9	246,4	242.6	238.4	233.9	229.1	223.9
$10^{-1}/_{2}$			283.3	280.4	277.3	273.8	269.9	265.8	261.3	256.4	251.3
11					305.9	302.4	298.6	294.4	289.9	285.1	279.9

MUD DENSITY, GRADIENT AND BUOYANCY FACTOR

NOTE: Buoyancy factor is for STEEL only

Mud density			Gradient	Buoyancy		Mud densit	Gradient	Buoyancy	
og/m²	lb/gall	Ib/ft ⁰	psi/ft	Factor	kg/m³	lb/gall	lb/ft ³	psi/ft	Factor
1000 1010	8.34 8.40	62.4 62.8	.433 .436	.873 .872	1800 1820	15.0 15.2	112 114	.779 .790	.771 .768
1030	8.50	64.3	.447	.869	1850	15.4	115	.800	765
1060	8.80	65.8	.457	.866	1870	15.6	117	.810	.762
1080	9.00	67.3	.468	1.862	1890	15.8	118	.821	.759
1100	9.20	68.8	.478	.860	1920	16.0	120	.831	.755
1130	9.40	70.3	.488	.856	1940	16.2	121	.842	753
1150	9.60	71.8	.499	.853	1970	16.4	123	.852	748
1164	9.625	72.0	.500	.853	1990	16.6	124	.862	.746
1180	9.80	73.3	.509	.850	2010	16.8	126	.873	.743
1200	10.0	74.8	.519	.847	2040	17.0	127	.883	740
1220	10.2	76.3	.530	.844	2060	17.2	129	,894	.737
1250	10.4	77.8	.540	.841	2090	17.4	130	.904	.734
1270 1290	10.6	79.3	.551	.838	2110	17.6	132	.914	.731
1290	10.8	80,8	.561	.835	2130	17.8	133	.925	.728
1320	11.0	82.3	1.571	.832	2160	18.0	135	.935	.725
1340	11.2	83.8	.582	.829	2180	18.2	136	.945	.722
1370	11.4	85.3	.592	.826	2210	18.4	138	.956	.719
1390 1410	11.6	86.8	.603	.823	2230	18.6	139	.966	.716
1410	11.8	88.3	.613	⊹.820	2250	18.8	141	.977	.713
1440	1.2.0	89.8	.623	.817	2280	19.0	142	.987	.710
1460	12.2	91.3	.634	.814	2300	19.2	144	.997	707
1490	12.4	92.8	.644	.810	2330	19.4	145	1.01	.704
1510 1530	12.6 12.8	94.3 95.8	.655	.808 .804	2350	19.6 19.8	147 148	1.02	.701
1530	12.8	90.8	.665	.804	2370	19.8	148	1.03	.698
1560	1.3.0	97.3	.675	.801	2400	20.0	150	1.04	.634
1580	13.2	98.7	.688	.798	2420	20.2	151	1.05	.692
1610	13.4	100	.696	.795	2450	20.4	153	1.06	.688
1630	13.6	102	.706	.792	2470	20.6	154	1.07	.685
1650	13.8	103	.717	.789	2490	20.8	156	1.08	.682
1680	14.0	105	.727	.786	2520	21.0	157	1.09	.679
1700	14.2	106	.738	.783	2540	21.2	159	1.10	.676
1730	14.4	108	.748	.780	2570	21.4	160	1.11	.673
1750	14.6	109	.758	.777	2590	21.6	162	1.12	.670
1770	14.8	1.11	.769	.774	2610	21.8	163	1.13	.667