Name: Enrolment No:		YUPES	
Course Program Course Instruc \checkmark Atte Assume	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022	$\begin{aligned} & : \text { III } \\ & : 03 \\ \mathrm{ks} & : 10 \end{aligned}$ marks).	rs.
SECTION-A			
S. No.		Marks	CO
1.	Attempt the following: (a) Define open system and closed system (b) State zeroth law of thermodynamics (c) Give the relation between C_{P} and C_{V} (d) Define intensive and extensive properties with examples	12 M	$\mathrm{CO1}$
2.	A gas in its ideal-gas state undergoes the following sequence of mechanically reversible processes in a closed system: (a) From an initial state of $70^{\circ} \mathrm{C}$ and 1 bar , it is compressed adiabatically to $150^{\circ} \mathrm{C}$ (b) It is then cooled from 150 to $70^{\circ} \mathrm{C}$ at constant pressure (c) Finally, it expands isothermally to its original state. Calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}^{\mathrm{ig}}$, and $\Delta \mathrm{H}^{\mathrm{ig}}$ for each of the three processes and for the entire cycle. Take $C_{V}^{i g}=12.471, C_{P}^{i g}=20.785 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$.	12 M	CO2
3.	Describe the working principle of Throttling Colorimeter for measurement of quality of Steam with neat diagram	12 M	$\mathrm{CO3}$
4.	Why is the Carnot cycle not a realistic model for a steam power plant? Explain	12 M	$\mathrm{CO4}$
5.	Compare Otto and Diesel cycle based on working and performance.	12 M	CO4
SECTION-B			
6.	a) Derive the law of conservation of energy using first law of thermodynamics for open system. 1 b) $20 \mathrm{~mol} / \mathrm{s}$ of air is compressed from 2 bar to 10 bar. The inlet temperature is 300 K and at the outlet of the compressed air is 450 K . The v1elocity at inlet and outlet of the compressor are 5 and $0.5 \mathrm{~m} / \mathrm{s}$. The compressor delivers power at $60 \mathrm{~kJ} / \mathrm{s}$. Assume	$\begin{gathered} \text { 10+10 } \\ \mathbf{M} \end{gathered}$	CO2

	that the enthalpy doesn't depend on pressure and $C_{P}=1.5 R$, find the rate of heat transfer.		
7.	(a) Explain the phase change of a pure substance with P-V, P-T and P-V-T diagram. (b) For liquid acetone at $20^{\circ} \mathrm{C}$ and $1 \mathrm{bar}, \beta=1.487 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}, \mathrm{k}=62 \times 10^{-6} \mathrm{bar}^{-1}$, $\mathrm{V}=1.287 \mathrm{~cm}^{3} \cdot \mathrm{~g}^{-1}$. For acetone, find: i) The value of $(\partial \mathrm{P} / \partial \mathrm{T}) \mathrm{V}$ at $20^{\circ} \mathrm{C}$ and 1 bar. ii) The pressure after heating at constant V from $20^{\circ} \mathrm{C}$ and 1 bar to $30^{\circ} \mathrm{C}$. iii) The volume change when T and P go from $20^{\circ} \mathrm{C}$ and 1 bar to $0^{\circ} \mathrm{C}$ and 10 bar .	$\begin{gathered} \mathbf{1 0 + 1 0} \\ M \end{gathered}$	$\mathrm{CO3}$

