Name: Enrolment No:		WUPES			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
	End Semester E	xamination, December 2022			
Course	: Thermodynamics and Phase Beha	avior	Semester	: III	
Program	: B. Tech. (APE Upstream)		Time	: 03 hrs.	
Course Coo	le: MEPD 2007		Max. Marks	: 100	

Instructions:

Attempt all questions from Section-A (each carrying 12 marks), Section-B (each carrying 20 marks).
 Assume suitable data wherever necessary. The notations used here have the usual meanings.
 SECTION-A

SECTION-A				
S. No.		Marks	CO	
1.	 Attempt the following: (a) Define open system and closed system (b) State zeroth law of thermodynamics (c) Give the relation between C_P and C_V (d) Define intensive and extensive properties with examples 	12 M	CO1	
2.	A gas in its ideal-gas state undergoes the following sequence of mechanically reversible processes in a closed system: (a) From an initial state of 70 °C and 1 bar, it is compressed adiabatically to 150 °C (b) It is then cooled from 150 to 70 °C at constant pressure (c) Finally, it expands isothermally to its original state. Calculate W, Q, ΔU^{ig} , and ΔH^{ig} for each of the three processes and for the entire cycle. Take C_V^{ig} =12.471, C_P^{ig} =20.785 J/mol.K.	12 M	CO2	
3.	Describe the working principle of Throttling Colorimeter for measurement of quality of Steam with neat diagram	12 M	CO3	
4.	Why is the Carnot cycle not a realistic model for a steam power plant? Explain	12 M	CO	
5.	Compare Otto and Diesel cycle based on working and performance.	12 M	CO	
	SECTION-B			
6.	 a) Derive the law of conservation of energy using first law of thermodynamics for open system.1 b) 20 mol/s of air is compressed from 2 bar to 10 bar. The inlet temperature is 300K and at the outlet of the compressed air is 450K. The v1elocity at inlet and outlet of the compressor are 5 and 0.5 m/s. The compressor delivers power at 60 kJ/s. Assume 	10+10 M	CO	

	that the enthalpy doesn't depend on pressure and $C_P=1.5R$, find the rate of heat		
	transfer.		
7.	(a) Explain the phase change of a pure substance with P-V, P-T and P-V-T diagram.		
	(b) For liquid acetone at 20°C and 1 bar, $\beta = 1.487 \times 10^{-3}$ °C ⁻¹ , $k = 62 \times 10^{-6}$ bar ⁻¹ ,		
	$V = 1.287 \text{ cm}^3 \cdot \text{g}^{-1}$. For acetone, find:	10+10	CO3
	i) The value of $(\partial P / \partial T)$ V at 20°C and 1 bar.	M	
	ii) The pressure after heating at constant V from 20°C and 1 bar to 30°C.		
	iii) The volume change when T and P go from 20°C and 1 bar to 0°C and 10 bar.		