Name:

Enrolment No:

ØUPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program Name: B. Tech (APE Gas) Course name: Engineering Thermodynamics Course Code: MECH2001 Note: Assume suitable data wherever necessary. Semester: III Time: 03hrs Max. Marks: 100

Section – A

Section – A Attempt all the questions. All questions carry equal marks				
S. No.		Marks	СО	
Q1	A closed system consisting of 4 lb of a gas undergoes a process during which the relation between pressure and volume is $pV^n = \text{constant}$. The process begins with $p_1 = 15 \text{ lbf/in.}^2$, $v_1 = 1.25 \text{ ft}^3$ /lb and ends with $p_2 = 53 \text{ lbf/in}^2$, $v_2 = 0.5 \text{ ft}^3$ /lb. Determine (a) the volume, in ft ³ , occupied by the gas at states 1 and 2 and (b) the value of n.	12	CO1	
Q2	A large stationary diesel engine produces 15 MW with a thermal efficiency of 40%. The exhaust gas, which we assume is air, flows out at 800 K and the intake is 290 K. How large a mass flow rate is that if that accounts for half the Q_L ? Can the exhaust flow energy be used?	12	CO2	
Q3	Derive Maxwell equations from basic thermodynamic relations.	12	CO3	
Q4	The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is represented by the equation: $H = 400x_1 + 600x_2 + x_1x_2 (40x_1 + 20x_2)$ where H is in J·mol ⁻¹ . Determine expressions for \overline{H}_1 and \overline{H}_2 as functions of x_1 , numerical values for the pure-species enthalpies H ₁ and H ₂ , and numerical values for the partial enthalpies at infinite dilution \overline{H}_1^∞ and \overline{H}_2^∞ .	12	CO4	
Q5	Explain Vapor-compression cycle.	12	CO5	
Section – B Answer all questions				
Q6	Binary system acetonitrile(1)/nitromethane(2) confirms closely to Roult's law. Vapor pressures for the pure species are given by the following equations: $\ln P_1^{sat} / kPa = 14.2724 - \frac{2945.47}{\frac{t}{oC} + 224}$ $\frac{\ln P_2^{sat}}{kPa} = 14.2043 - \frac{2972.64}{\frac{t}{oC} + 209}$ (i) Prepare graph showing P vs. x ₁ and P vs. y ₁ for a temperature of 75°C. (ii) Prepare graph showing t vs. x ₁ and t vs. y ₁ for a pressure of 75 kPa.	20	CO4	

Q7	 i. Explain the phase change of a pure substance with P-V, P-T and P-V-T diagram. ii. For liquid acetone at 20°C and 1 bar, β = 1.487 × 10⁻³ °C⁻¹, k = 62 × 10 −6 bar⁻¹, V = 1.287 cm³·g⁻¹ For acetone, find: a) The value of (∂ P / ∂ T) V at 20°C and 1 bar. (b) The pressure after heating at constant V from 20°C and 1 bar to 30°C. (c) The volume change when T and P go from 20°C and 1 bar to 0°C and 10 bar. 	10+10	CO3	
----	---	-------	-----	--