Name: Enrolment No:	$\because \circlearrowleft \square=S$		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022			
Program Name: B. Tech (APE Gas) Semester: III Course name: Engineering Thermodynamics Time: 03hrs Course Code: MECH2001 Max. Marks: 100 Note: Assume suitable data wherever necessary.			
Section - AAttempt all the questions. All questions carry equal marks			
S. No.		Marks	CO
Q1	A closed system consisting of 4 lb of a gas undergoes a process during which the relation between pressure and volume is $\mathrm{pV}^{\mathrm{n}}=$ constant. The process begins with $\mathrm{p}_{1}=$ $15 \mathrm{lbf} / \mathrm{in}^{2}{ }^{2}, \mathrm{v}_{1}=1.25 \mathrm{ft}^{3} / \mathrm{lb}$ and ends with $\mathrm{p}_{2}=53 \mathrm{lbf} / \mathrm{in}^{2}, \mathrm{v}_{2}=0.5 \mathrm{ft}^{3} / \mathrm{lb}$. Determine (a) the volume, in ft^{3}, occupied by the gas at states 1 and 2 and (b) the value of n .	12	CO1
Q2	A large stationary diesel engine produces 15 MW with a thermal efficiency of 40%. The exhaust gas, which we assume is air, flows out at 800 K and the intake is 290 K . How large a mass flow rate is that if that accounts for half the Q_{L} ? Can the exhaust flow energy be used?	12	CO2
Q3	Derive Maxwell equations from basic thermodynamic relations.	12	CO3
Q4	The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is represented by the equation: $H=400 x_{1}+600 x_{2}+x_{1} x_{2}\left(40 x_{1}+20 x_{2}\right)$ where H is in $\mathrm{J} \cdot \mathrm{mol}^{-1}$. Determine expressions for \bar{H}_{1} and \bar{H}_{2} as functions of x_{1}, numerical values for the pure-species enthalpies H_{1} and H_{2}, and numerical values for the partial enthalpies at infinite dilution \bar{H}_{1}^{∞} and \bar{H}_{2}^{∞}.	12	CO4
Q5	Explain Vapor-compression cycle.	12	CO5
Section - B Answer all questions			
Q6	Binary system acetonitrile(1)/nitromethane(2) confirms closely to Roult's law. Vapor pressures for the pure species are given by the following equations: $\begin{gathered} \ln P_{1}^{\text {sat }} / k P a=14.2724-\frac{2945.47}{\frac{t}{o C}+224} \\ \frac{\ln P_{2}^{s a t}}{k P a}=14.2043-\frac{2972.64}{\frac{t}{o C}+209} \end{gathered}$ (i) Prepare graph showing P vs. x_{1} and P vs. y_{1} for a temperature of $75^{\circ} \mathrm{C}$. (ii) Prepare graph showing t vs. x_{1} and t vs. y_{1} for a pressure of 75 kPa .	20	CO4

Q7	i.	Explain the phase change of a pure substance with P-V, P-T and P-V-T diagram. For liquid acetone at $20^{\circ} \mathrm{C}$ and 1 bar, $\beta=1.487 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}, \mathrm{k}=62 \times 10-6 \mathrm{bar}^{-1}, \mathrm{~V}=1.287 \mathrm{~cm}^{3} \cdot \mathrm{~g}^{-1}$ For acetone, find: a) The value of $(\partial \mathrm{P} / \partial \mathrm{T}) \mathrm{V}$ at $20^{\circ} \mathrm{C}$ and 1 bar. (b) The pressure after heating at constant V from $20^{\circ} \mathrm{C}$ and 1 bar to $30^{\circ} \mathrm{C}$. (c) The volume change when T and P go from $20^{\circ} \mathrm{C}$ and 1 bar to $0^{\circ} \mathrm{C}$ and 10 bar.	$\mathbf{1 0 + 1 0}$	$\mathbf{C O 3}$

