Name:	WUPES	WUPES								
Enrolme										
Program Course Course Nos. of J Instructi	: III : 3 hrs s: 100									
SECTION A (5X4=20 marks)										
S. No.		Marks	CO							
1	<i>Identify</i> the different methods of non-dimensionalization.	4	CO1							
2	Summarize material balance equation for a reactive system.	4	C01							
3	<i>Illustrate</i> the use of excess air in the combustion of fuel and write down the formulae.	4	CO1							
4	Dramatize the use of Bypass in process industry.	4	CO3							
5	<i>Classify</i> sensible heat and latent heat and the methods necessary for calculating total heat balances during the energy balances.	4	CO4							
SECTION B										
	(4 X 10=40 marks)									
6	A liquefied mixture of methane, butane and propane has the compositions of 30,30 and 40 percent respectively by volume. <i>Identify</i> mol%, weight %, and average molecular weight of the mixture.	10	CO1							
7	Humid air at 75° C, 1.1 bar and 30% relative humidity is fed into a process unit at a rate of 1000 m ³ /h. Explore the molal humidity, absolute humidity and the percentage humidity of air. Vapor pressure of water at the given conditions is 0.3854 bar.	10	CO2							
8	 To a combustion chamber, if 10 kg of methane (CH4) and 700 kg of air are admitted, <i>Solve</i> a. Write the chemical reaction and balance. b. Moles of methane entering. c. Moles of air entering. d. Exhaust composition. 	10	CO3							
9	1000 kg /h of thermic fluid to be used as a heat transfer medium is being heated using a heater from 380 to 550 K. <i>Appraise</i> the heat load on the heater in KW. The heat capacity of the fluid is given by the equation $Cp=1.436+2.18x10^{-3}T$ where T in K and Cp in kJ/kg K.	10	CO4							
SECTION C (2 X 20-40 marks)										
10	(2 X 20=40 marks) A simplified process for SO ₂ to SO ₃ is as shown in the figure below.	20	<u> </u>							
10	A simplified process for SO_2 to SO_3 is as shown in the figure below.	20	CO3							

	1							
	only 90% the lbs o from the (a) A di system i it. The These p distillati and disti (b) For 39% HN	 6. In the convert f air needed to b converter. stillation column is designed such composition of f ercentages are o on column to hav illate by using m carrying out nitr NO₃ and 42%H₂S 	n is designed to so that the bottoms feed stream is 30% n mole percent). we 30 mol/h of bo	n from SO ₂ to SO Ilfur and the com DR eparate Benzene, will contain 2% 2 6 Benzene, 35% If 100 moles per ttoms, <i>evaluate</i> th is desired to have f 68.3% is alread	Toluene and X_2 Note that the conversion of exiting the conversion of exiting the composition of the comp	<i>Calculate</i> ing stream ylene. The Benzene in % Xylene. fed to the of bottoms containing		
	A natural gas stream has the following composition on mole basis: $CH_4 - 84\%$, C_2H_{6-} 13% and $N_2 - 3\%$. <i>Analyze</i> the heat to be added to heat 10 kmol of natural gas from 298 K to 523 K using the heat capacity data given below.							
11	Gas CH4	C a 19.2494	$b_{p} = a + bT + cT^{2} + bT + cT^{2} + bT + cT^{2} + bT + cT^{2} + cT^{2$	+ dT^3 , $kJ/$ (kmol- c x 10 ⁶ 11.973	K). d x 10 ⁹ -11.3173]	20	CO4
	C ₂ H ₆	5.4129	178.0872	-67.3749	8.7147			
	N ₂	29.5909	-5.141	13.1829	-4.968			