Name: Enrolment No:			
Course: Fluid Mechanics Program: B. Tech. (ADE, AMNT) Course Code: MECH 2023		S Semeste Time Max.	$\begin{aligned} & \text { II } \\ & \text { hrs. } \\ & \text { s: } 100 \end{aligned}$
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Differentiate between free and forced vortex flow along with suitable examples.	5	CO1
Q 2	Distinguish between dynamic viscosity and kinematic viscosity	5	CO1
Q 3	Explain the bourdon tube pressure gauge.	5	CO1
Q 4	Explain the types of flow of liquid.	5	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Two large plane surfaces are 2.4 cm apart. The space between the surfaces is filled with glycerin. What force is required to drag a very thin plate of surface area $0.5 \mathrm{~m}^{2}$ between the two large plane surfaces at a speed of $0.6 \mathrm{~m} / \mathrm{s}$, if the thin plate is at a distance of 0.8 cm from one of the plane surfaces? Take the dynamic viscosity of glycerin $=8.10 \times 10^{-1}$ $\mathrm{Ns} / \mathrm{m}^{2}$.	10	CO 2
Q 7	Find the magnitude and direction of the resultant force due water acting on a roller gate of cylindrical form of 4.0 m diameter, when the gate is placed on the dam in such a way that water is just going to spill. Take the length of gate as 8 m .	10	CO 2
Q 8	In a two dimensional incompressible flow, the fluid velocity components are given by. $u=x-4 y \text { and } v=-y-4 x$ Show that velocity potential exists and determine its form. Find also stream function.	10	CO 2
Q 9	The water is flowing through a taper pipe of length 100 m having diameter 600 mm at the upper end and 300 mm at the lower end, at the rate of 50 litres/s. the pipe has a slope of 1 in 30 . Find the pressure at the lower end if the pressure at the higher level is $19.62 \mathrm{~N} / \mathrm{cm}^{2}$.	10	CO 3

	OR A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of water. The pressure at inlet is 17.658 $\mathrm{N} / \mathrm{cm}^{2}$ and the vacuum pressure at the throat is 30 cm of mercury. Find the discharge of water through venturimeter. Take $\mathrm{Cd}=0.98$.		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a horizontal circular pipe diameter 100 mm and length 10 m . Calculate the difference of pressure at the two ends of the pipe, if 100 kg of oil is collected in a tank in 30 seconds. OR An oil of specific gravity is flowing through a pipe of diameter 300 mm at the rate of 500 litres/s. find the head lost due to friction and power required to maintain the flow for a length of 1000 m . Take kinematic viscosity $=0.29$ stokes.	20	$\mathrm{CO3}$
Q11	For the velocity profile for laminar boundary layer $\frac{u}{U}=\frac{3}{2}\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}$ Determine the boundary layer thickness, shear stress, drag force and coefficient of drag in terms of Reynolds number.	20	CO4

