Name:	
Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2022

Programme Name:B. Tech ADESemester: IIICourse Name: Components of Automotive ChassisTime: 03 hrsCourse Code: MEAD-2004Max. Marks: 100

Nos. of page(s) : 2

S.N	Section A	Mark	CO
1	Designate the Bias belted tyre used for the passenger cars for the following dimensions a. Width of the tyre - 195 mm b. Aspect ratio - 55 c. Rim diameter - 18" d. load carrying capacity at 2.3 bar inflation Pressure is - 625 kg e. Maximum speed of the vehicle is - 210 KMPH Also calculate the section height of the tyre. (Choose the suitable data from the Load Index & Speed Index sheet shown in Annexure –I)	4	CO1
2	Identify and label the following mechanism shown in figure 1. $\begin{array}{c} 2 & 2 \\ \hline 2 & 3 \\ \hline 7 & \hline \\ \hline 6 & \hline \\ \hline Fig 1 \\ \hline \end{array}$	4	CO2
3	Define the following term of steering geometry A) Camber	4	CO1

	B) Scrub Radius		
4	A car of a mass 800 kg is travelling at 36 km/h. Determine A) The kinetic energy it possesses (kJ)	4	CO2
	B) The average braking force (N) to bring it to rest in 20 meters.		
5	Define: a) Scrub Radius	4	Co2
	b) Toe-in and Toe-out	-	
	Section B		
6	Explain the importance of "Dropping" provided in the front axle and compare the same with straight Front Axle without Dropping.	10	CO4
7	As an automotive engineer you have been asked to select rear axle for heavy duty vehicle out of three different type of axle, semi, third quarter and full floating axle which one you will select, Justify your answer	10	CO1
8	Draw a line diagram of air suspension system used in four wheeled automobile and explain the following entities related to air suspension system. A) flow of air takes place	10	соз
	B) Controlling of chassis height		
9	Radial tyre is more beneficial over Bias tyre, justify your answer and also differentiate both the tyres.	10	соз
	Section C		
10	For the following given frame shown in Figure.2, assess the various constructional features and design aspects with respect to following		
	a. Upswept for Passenger Cars and Commercial vehicles		
	b. Importance of Convergence in the front of the frame	20	CO4
	c. Vertical bending		
	d. Lozenging and		
	e. Lateral Bending		

		Figure 2. Fra	SE PC B FRONT		
11	the following list me		r component for the passenger car from fy your selections. (You may select more		
	1. Ladder chassis 2. Tubular space-frame 3. Monocoque 4. ULSAB monocoque 5. Carbon-fiber monocoque 6. Aluminium space-frame	1. Single plate with Diaphragm 2. Single Plate with coil spring 3. Multi plate with Diaphragm 4. Multi plate with coil spring 5. Centrifugal 6. Semi-centrifugal 7. torque Converter 8. Dual Clutch (DCT)	1. Manual 1. Sliding mesh 2. Constant mesh 3. Synchromesh 4. Combination of constant and synchromesh 2. Continuous Variable Transmission 3. Clutch less Manual Transmission 4. Overdrive 5. Differential gear box 6. Limited Slip Differential gear box	20	CO5
		OR			
11	vehicle from the fol		a component for your Light commercial and 2. Justify your selections. (You may mns.)	20	CO5

Load Index

Load	Wheel load capacity in kg with tyre pressure measured in bars										
index	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5
69	215	225	240	250	260	270	285	295	305	315	325
70	225	235	245	260	270	280	290	300	315	325	335
71	230	240	255	265	275	290	300	310	325	335	345
72	235	250	260	275	285	295	310	320	330	345	355
73	245	255	270	280	295	305	315	330	340	355	365
74	250	260	275	290	300	315	325	340	350	365	375
75	255	270	285	300	310	325	335	350	360	375	387
76	265	280	295	310	320	335	350	360	375	385	400
77	275	290	305	315	330	345	360	370	385	400	412
78	280	295	310	325	340	355	370	385	400	410	425
79	290	305	320	335	350	365	380	395	410	425	437
80	300	315	330	345	360	375	390	405	420	435	450
81	305	325	340	355	370	385	400	415	430	445	462
82	315	330	350	365	380	395	415	430	445	460	475
83	325	340	360	375	390	405	425	440	455	470	487
84	330	350	365	385	400	420	435	450	470	485	500
85	340	360	380	395	415	430	450	465	480	500	515
86	350	370	390	410	425	445	460	480	495	515	530
87	360	380	400	420	440	455	475	490	510	525	545
88	370	390	410	430	450	470	485	505	525	540	560
89	385	405	425	445	465	485	505	525	545	560	580
90	400	420	440	460	480	500	520	540	560	580	600
91	410	430	450	475	495	515	535	555	575	595	615
92	420	440	465	485	505	525	550	570	590	610	630
93	430	455	475	500	520	545	565	585	610	630	650
94	445	470	490	515	540	560	585	605	625	650	670
95	460	485	505	530	555	575	600	625	645	670	690
96	470	495	520	545	570	595	620	640	665	685	710
97	485	510	535	560	585	610	635	660	685	705	730
98	500	525	550	575	600	625	650	675	700	725	750
99	515	540	570	595	620	650	675	700	725	750	775
100	530	560	590	615	640	670	695	720	750	775	800

Speed Index

Top speed of car (km h ⁻¹)	Tyre load capacity (%)							
	V	Speed symbol W	Y Tyres					
210	100	100	100					
220	97	100	100					
230	94	100	100					
240	91	100	100					
250	_	95	100					
260	_	90	100					
270	_	85	100					
280	_	_	95					
290	_	-	90					
300	_	_	85					