Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIESEnd Semester Examination, December 2022Course: \quad Thermodynamics and kinematics of materialsProgram: B. Tech Advanced Materials and NanotechnologyCourse Code: MECH 2047			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain briefly zeroth law of thermodynamics.	4	CO1
Q 2	Calculate the enthalpy of formation of ethane from the following data: (i) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2} ; \Delta_{\mathrm{f}} \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ}$ (ii) $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{o}}=-285.8 \mathrm{~kJ}$ (iii) $\quad \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{o}}=-1560 \mathrm{~kJ}$	4	CO1
Q 3	Write Gibbs Helmholtz equation giving meanings of the symbols used.	4	CO1
Q 4	Define electrode potential, oxidation potential and reduction potential. Why is it not possible to determine the absolute value of electrode potential?	4	CO1
Q 5	A reversible change has quasi-static characteristics, but a quasi-static process may not be reversible one. Justify.	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	One kg of gaseous CO_{2} contained in a closed system undergoes a reversible process at constant pressure. During this process 42 kJ of internal energy is decreased. Determine the work done during the process. Take $\mathrm{Cp}=840 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ and $\mathrm{Cv}=600 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.	10	CO2
Q 7	State Henry's law correlating the pressure of a gas and its solubility in a solvent and mention two applications for the law. What helps in existence of aquatic life?	10	CO 3

Q 8	At what partial pressure, oxygen will have a solubility of $0.05 \mathrm{~g} / \mathrm{L}$ in water at 293 K ? Henry's constant $\left(\mathrm{K}_{\mathrm{H}}\right)$ for O_{2} in water at 293 K is 34.86 kbar . Assume the density of the solution to be same as that of the solvent.	10	CO 2
Q 9	A refrigerator transfers heat from a low temperature medium (the refrigerated space) to a high temperature one (the room space). Is this a violation of the second law of thermodynamics? Explain. OR State and explain first law of thermodynamics. What are the limitations first law of thermodynamics	10	CO1
SECTION-C (2Qx20M=40 Marks)			
Q 10	What do you understand by the terms ideal gas and real gas? Comment on the statement that all gases behave ideally at low pressures and high temperature.	20	CO 3
Q 11	A resistor of 30 ohms is maintained at a constant temperature of $27^{\circ} \mathrm{C}$ while a current of 10 amperes is allowed to flow for 1 sec . Determine the entropy change of the resistor and the universe. If the resistor initially at $27^{\circ} \mathrm{C}$ is now insulated and the same current is passed for the same time, determine the entropy change of the resistor and the universe. The specfici heat of the resistor is $0.9 \mathrm{Kj} / \mathrm{Kg} \mathrm{K}$ and the mass of the resistor is 10 g . OR A copper block of mass 1 kg at 500 K is immersed in lake at 300 K till it reaches thermal equilibrium with water. Find the total (i) Total heat transferred to the lake, (ii) Change in entropy of the lake, (iii) Change in entropy of Copper (Cp of Copper=0.386 $\mathrm{kJ} / \mathrm{kgK}, \quad \mathrm{Cp}$ of Water=4.187kJ/kg-K).	20	CO4

