Name:

Enrolment No:

Semester: III

: 03 hrs.

Time

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Physical Chemistry III

Program: B.Sc. (H) Chemistry & Int. B.Sc.-M.Sc. Chemistry

Course Code: CHEM 2003 Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	The vapour pressure of dichloromethane at 24.1 0 C is 53.3 kPa and its enthalpy of vaporization is 28.7 kJ mol ⁻¹ . Estimate the temperature at which its vapour pressure is 70.0 kPa.	4	CO1	
Q 2	Suggest the possible maximum number of phases that can co-exist in the following systems: a. Lead and silver alloy system b. Potassium iodide-water system	4	CO1	
Q 3	Calculate how long a hydrogen atom will remain on the surface of a solid at 298 K if its desorption activation energy is 15 kJ mol ⁻¹ . Assume that $\tau_0 = 10^{-13}$ s.	4	CO2	
Q 4	Discuss in detail the graph of potentiometric titration for a strong acid- strong base titration.	4	CO3	
Q 5	Distinguish between Eutectic point and Peritectic point.	4	CO1	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	The melting point curve of ice in the water system has a negative slope. Explain it with the help of the phase diagram of water system.	10	CO1	
Q 7	The specific volumes of ice and water at 0° C are 1.0907 cm^3 and 1.0001 cm^3 , respectively. What would be the change in melting point of ice per atm increase of pressure? Heat of fusion of ice = 79.8 cal g^{-1} .			
	Or	10	CO1	
	State the phase rule. Explain the various terms used in it. Discuss the derivation of the phase rule from thermodynamic considerations.			

Q 8	Discuss the salient features of phase diagram of Sulphur system. Why can four phases of heterogeneous system not exist at equilibrium?	10	CO1		
Q9	A cell uses Zn^{2+}/Zn and Ag^{+}/Ag electrodes. Write the cell representation, half-cell reactions and net cell reaction. Calculate the EMF of the cell. Given $E^{0}_{Zn^{2+}/Zn} = -0.76 \text{ V}$ and $E^{0}_{Ag^{+}/Ag} = 0.8 \text{ V}$.	10	CO3		
	SECTION-C (2Qx20M=40 Marks)				
Q 10	(a) Distinguish between adsorption and absorption. Discuss the factors which affect the adsorption of a gas on a solid adsorbent. Discuss in brief the type of adsorption isotherms commonly observed for the adsorption of gases on a variety of adsorbents at different temperature.	10	CO2		
	(b) Discuss in detail the various applications of adsorption in industry and in everyday life.	10			
Q 11	(a) Define the term: ionic mobility. Derive the relation between ionic mobility and molar ionic conductance. How is ionic mobility determined experimentally?	10			
	(b) EMF of the cell Sn/SnCl ₂ (0.5 M) // AgCl/ Ag is 0.430 V at 25 0 C and 0.448 at 0 0 C. Calculate the free energy (Δ G), enthalpy change (Δ H) and entropy (Δ S) of the cell reaction at 25 0 C.	+	CO3		
		10			