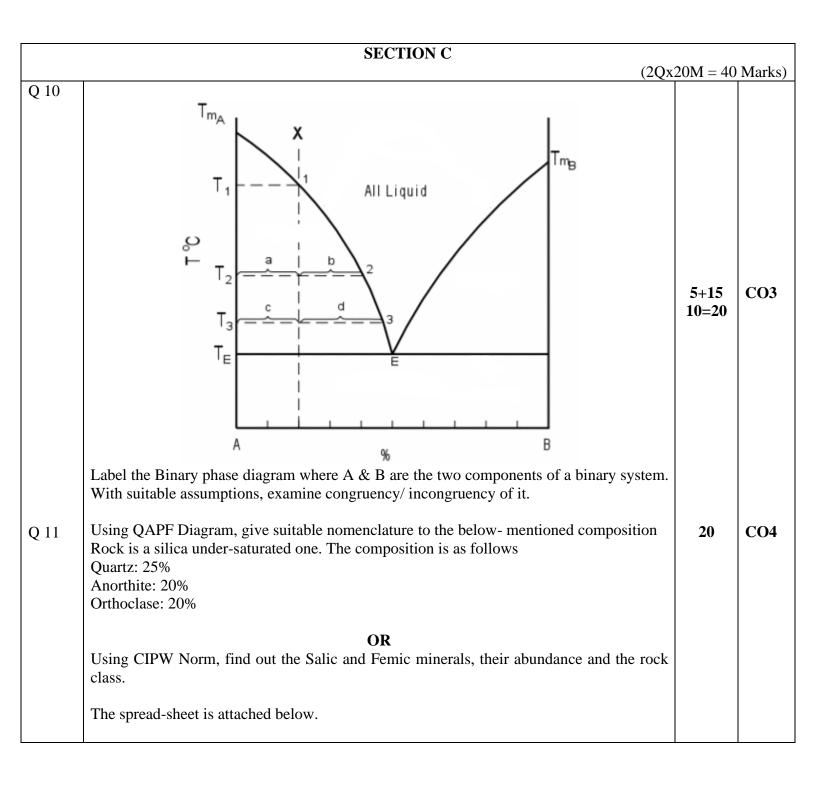
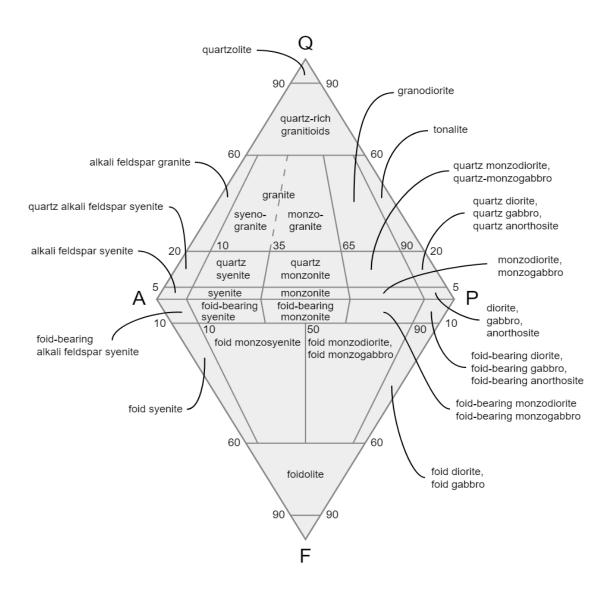
Name:	MIIDE C
Enrolment No:	UPLS UNIVERSITY OF TOMORROW


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES


End Semester Examination, December- 2022

Course Name: Igneous Petrology Semester: III

Programme Name: B. Sc Geology (Hons) Time: 03 hrs

Progr Cours	00									
Instruction: Attach the QAPF Diagram & CIPW Sheet with Answer Script										
	SECTION A									
	(50	Qx 4M = 2	0 Marks)							
Q 1	a. The two main mechanisms through which rocks melt are andb. With respect to silica percentage, two extreme types of magmas are &	. 04	CO1							
Q 2	Mark True/ False a. Rhyolitic magmas are the most viscous one b. Rocks consisting of more than 90% mafic minerals are termed as Melanocratic c. Gabbro is devoid of quartz d. Plagioclase replaced by nepheline in nepheline-syenite	04	CO1							
Q 3	a. Sills linked by relatively short dike-like segments known as b. Volcanic glass is otherwise known as c. Anhedral grains give rise totexture d. Transformation of glass to crystalline matter is known as	04	CO1							
Q 4	a. In Poikilitic texture, smaller grains/are accommodated in larger grains/b. CIPW Classification based upon two types of minerals, namely &	04	CO2							
Q 5	 a. Mutually touching phenocrysts in interstitial matrix give rise to texture b. Sandpaper is an example of abrasive. c. In CIPW, the input mineral composition must be in form d. Plutons of area < 100 sq. km is known as 	04	CO2							
	SCETION B) 10N/L 4	0.1.							
Q 6	Differentiate between vesicular and amygdaloidal texture and defend their occurrence is volcanic rocks	$ \begin{array}{c c} 2x10M = 4 \\ \hline 10 \end{array} $	CO3							
Q 7	Explain the formation mechanism of porphyritic texture highlighting the role of physio- chemical condition	10	CO2							
Q 8	Defend the statement "Reaction texture termed as Reaction structure".	10	CO3							
Q 9	Compare Tamman & Ostwald theories and suggest the most appropriate one governing crystallization of uni-component magma.	10	CO4							
	OR Examine & validate the statement "Uni-component system should have a maximum of two degree of freedoms".									

Consti	tuents Of Rock	SiO ₂		Fe ₂ O ₃	FeQ	MgO	CaQ	Na ₂ O	K ₂ O	H ₂ O	CO ₂	TiO ₂	P_2O_5	SO ₂	S	MnO					
Percen	tages(analysis)	49.68	36.13	2.49	8.88	1.13	0.79	0.25	0.32						П		Molecular			Gro	up of
Molecular Weights		60	102	160	72	40	56	62	94	18	44	80	32	355	19	71	Proportions	Molecular	Percentage		dard
Molecular Proportion															П		Troporacias	Weights 60	NORM		eral
Quartz	S ₁ O ₂																			Q	
Orthoclase	K ₂ O, Al ₂ O ₃ , 6SiO ₂																	556			
Albite	Na ₂ O, Al ₂ O ₃ , 6 SiO ₂																	524			
Anorthite	CaO, Al ₂ O ₁ , 2 SiO ₂														П			278		F	
Leucite	K2O, Al ₂ O ₃ , 4 SiO ₂																	436			
Nepheline	Na2O, Al ₂ O ₃ , 2 SiO ₂														П			284		L	Salic
Corundum	Al ₂ O ₃														П			102		С	Group
Acmite	Na ₂ O, Fe ₂ O3, 4SiO ₂																	462			
	CaO, SiO2																	116			
	MgO, SiO2																	100			
Diopside	FeO, SiO2																	132			
Wollastonite	CaO, SiO2														П			116			
	MgO, SiO2																	100			
Hypersthene	FeQ, SiO2														П			132		P	
	2MgO, SiO2																	140			1
Olivine	2FeO, SiO2														П			204		0	
Magnetite	FeO, Fe ₂ O ₃																	232			1
Haematite	Fe ₂ O ₃														П			160			
Ilmanite	FeO, TiO2																	152		M	
Pyrite	FeS ₂														П			120			
Apatite	3Cao, P2O1, 1/3CaF2																	336			Femic
Calcite	CaO.CO ₂																	100		A	Group