Name: Enrolment No:			
Cours Semes Progr Code: Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, December 2022 Analog System and Application r: III m: B.Sc H (Physics) \& Int. B.Sc. MSc. Physics HYS 2025 ions: All questions are compulsory. Internal choices are given in Q6 a		
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	List the basic conditions to be satisfied for faithful amplification.	4	CO1
Q2	For an ideal Op-Amp, value of input impedance, bandwidth, offset voltage and open loop voltage gain are (a). \qquad (b) \qquad (c). \qquad , and (d) \qquad respectively.	4	CO1
Q3	With the help of output characteristic curves of a common emitter amplifier, please define Active, Cutoff and Saturation regions.	4	CO1
Q4	State the law of mass-action and its significance.	4	CO1
Q5	Explain the principle and working of a solar cell in brief.	4	CO2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q6	State the principle and working of a light-emitting diode (LED) with suitable diagrams. How are LEDs employed as power indicators and seven-segment displays? OR What is a ZENER diode and how is it used as a voltage regulator? (Use appropriate diagrams and expressions)	10	CO1
Q7	Draw the circuit diagram and explain the working of a RC coupled transistor amplifier. Also mention its advantages and disadvantages.	10	CO2
Q8	Explain the working of Hartley's oscillator with the help of a circuit diagram and also write the expressions for feedback and frequency fractions. What are the drawbacks of L-C based oscillators?	10	CO2
Q9	(a) A transistor uses voltage divider bias method, with $\mathrm{R}_{1}=50 \mathrm{k} \Omega, \mathrm{R}_{2}=$ $10 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega$, If $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.1 \mathrm{~V}$, determine the value of Ic. (b) If negative voltage feedback fraction is 0.01 and gain after feedback is 50 , the value of voltage gain without feedback will be.....	5	CO3

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$			
Q10	Calculate the output voltage in the following circuit: OR An amplifier has an open circuit voltage gain of 1000 , an output resistance of 15Ω and an input resistance of $7 \mathrm{k} \Omega$. It is supplied from a signal source of e.m.f. 10 mV and internal resistance $3 \mathrm{k} \Omega$. The amplifier feeds a load of 35Ω. Determine (i) the magnitude of output voltage, and (ii) power gain.	20	CO 3
Q11	(a) Analyse the circuit of a single stage common-emitter amplifier as a two port network using h-parameter model. (b) Design an operational amplifier circuit to be used as (a) a differentiator, and (b) an integrator.	$\begin{aligned} & 10 \\ & 5+5 \end{aligned}$	CO4

