Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Analog System and Application

Semester: III

Program: B.Sc H (Physics) & Int. B.Sc. MSc. Physics

Code: PHYS 2025

Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. Internal choices are given in Q6 and Q10

SECTION A (5Qx4M=20Marks)			
S. No.		Marks	CO
Q 1	List the basic conditions to be satisfied for faithful amplification.	4	CO1
Q2	For an ideal Op-Amp, value of input impedance, bandwidth, offset voltage and open loop voltage gain are (a), (b), (c), and (d) respectively.	4	CO1
Q3	With the help of output characteristic curves of a common emitter amplifier, please define Active, Cutoff and Saturation regions.	4	CO1
Q4	State the law of mass-action and its significance.	4	CO1
Q5	Explain the principle and working of a solar cell in brief.	4	CO2
	SECTION B (4Qx10M= 40 Marks)		_
Q6	State the principle and working of a light-emitting diode (LED) with suitable diagrams. How are LEDs employed as power indicators and seven-segment displays? OR What is a ZENER diode and how is it used as a voltage regulator? (Use	10	CO1
Q7	appropriate diagrams and expressions) Draw the circuit diagram and explain the working of a RC coupled transistor amplifier. Also mention its advantages and disadvantages.	10	CO2
Q8	Explain the working of Hartley's oscillator with the help of a circuit diagram and also write the expressions for feedback and frequency fractions. What are the drawbacks of L-C based oscillators?	10	CO2
Q9	(a) A transistor uses voltage divider bias method, with R_1 = 50 k Ω , R_2 = 10 k Ω and R_E = 1 k Ω , If V_{CC} = 12 V and V_{BE} = 0.1 V, determine the value of Ic.	5	CO3
	(b) If negative voltage feedback fraction is 0.01 and gain after feedback is 50, the value of voltage gain without feedback will be	5	

